RSC Advances
Paper
1
0 A. Katritzky and C. Rees, Comprehensive Heterocyclic
Chemistry, Pergamon, Oxford, 1984, vol. 2, p. 395.
Conclusions
We have successfully prepared a pyridinyl-containing poly- 11 M. Weiss, J. Am. Chem. Soc., 1952, 74, 200–202.
benzoxazines, PBz (1), from the Mannich condensation of (2), 12 Y.-C. Huang, K.-L. Wang, C.-H. Chang, Y.-A. Liao, D.-J. Liaw,
phenol, and paraformaldehyde using toluene–ethanol (1/1) as
the reaction solvent. When the THF dilute solution of PBz (1)
K.-R. Lee and J.-Y. Lai, Macromolecules, 2013, 46, 7443–
7450.
was protonated with HCl, the intensity at 338 nm decreased, 13 D.-J. Liaw, K.-L. Wang, E.-T. Kang, S. P. Pujari, M.-H. Chen,
and a new absorption at 458 nm appeared in the UV-vis
spectra. No obvious uorescence at 500–700 nm was observed
Y.-C. Huang, B.-C. Tao, K.-R. Lee and J.-Y. Lai, J. Polym.
Sci., Part A: Polym. Chem., 2009, 47, 991–1002.
in the emission spectrum for PBz (1). However, a new strong 14 N. N. Ghosh, B. Kiskan and Y. Yagci, Prog. Polym. Sci., 2007,
uorescence at 570 nm was observed in the emission spec-
32, 1344–1391.
trum for protonated PBz (1). In contrast, no obvious emission 15 K. Zhang, Q. Zhuang, X. Liu, R. Cai, G. Yang and Z. Han, RSC
was observed for either P(B-oda) or protonated P(B-oda), in
Adv., 2013, 3, 5261–5270.
which no pyridinyl group was present. These results suggest 16 P. Zhao, Q. Zhou, Y. Deng, R. Zhu and Y. Gu, RSC Adv, 2013,
that the pyridinyl-containing PBz (1) can be used as a proton
4, 238–242.
sensor via a protonation process. To the best of our knowl- 17 X. Ning and H. Ishida, J. Polym. Sci., Part A: Polym. Chem.,
edge, the absorption and emission of protonated poly-
1994, 32, 1121–1129.
benzoxazines has not been reported. Aer curing, the 18 C.-F. Wang, Y.-C. Su, S.-W. Kuo, C.-F. Huang, Y.-C. Sheen and
ꢀ
thermoset of PBz (1), PBz (1)-T, shows a T
g
value at 261 C, and
F.-C. Chang, Angew. Chem., Int. Ed., 2006, 45, 2248–2251.
ꢀ
ꢁ1
a CTE at 38 ppm C , and 5% decomposition temperature at 19 T. Takeichi, T. Kano and T. Agag, Polymer, 2005, 46, 12172–
ꢀ
4
14 (N
2
) and 419 C (air), demonstrating moderate-to-high
12180.
thermal stability. FTIR spectra show that the surface free 20 T. Agag and T. Takeichi, J. Polym. Sci., Part A: Polym. Chem.,
energy is strongly related with the fraction of intermolecular
2007, 45, 1878–1888.
hydrogen bonding. In addition, the fraction of intermolecular 21 J. Liu, T. Agag and H. Ishida, Polymer, 2010, 51, 5688–5694.
hydrogen bonding in this work is much higher than that in 22 T. Agag, S. Geiger, S. M. Alhassan, S. Qutubuddin and
our previous work due to the hydrogen bonding between the
phenolic OH and pyridinyl moiety. However, high contact 23 C. Altinkok, B. Kiskan and Y. Yagci, J. Polym. Sci., Part A:
H. Ishida, Macromolecules, 2010, 43, 7122–7127.
ꢀ
ꢁ2
angle (102 ) and low surface energy (19.6 mJ m ) can still be
obtained even with the high Fraction of intermolecular 24 C. H. Lin, S. L. Chang, T. Y. Shen, Y. S. Shih, H. T. Lin and
Polym. Chem., 2011, 49, 2445–2450.
hydrogen bonding.
C. F. Wang, Polym. Chem., 2012, 3, 935–945.
25 I. K. Spiliopoulos and J. A. Mikroyannidis, Macromolecules,
1
998, 31, 1236–1245.
Acknowledgements
2
6 Z. Brunovska, J. P. Liu and H. Ishida, Macromol. Chem. Phys.,
1999, 200, 1745–1752.
The authors thank the National Science Council of the Republic
of China for nancial support.
27 Y. Shibayama, T. Kawauchi and T. Takeichi, High Perform.
Polym., 2013, DOI: 10.1177/0954008313495245.
2
8 C. H. Lin, S. L. Chang, H. H. Lee, H. C. Chang, K. Y. Hwang,
A. P. Tu and W. C. Su, J. Polym. Sci., Part A: Polym. Chem.,
2008, 46, 4970–4983.
Notes and references
1
2
B. Tamami and H. Yeganeh, Polymer, 2001, 42, 415–420.
K.-L. Wang, W.-T. Liou, D.-J. Liaw and S.-T. Huang, Polymer, 29 G. Hougham, G. Tesoro and J. Shaw, Macromolecules, 1994,
008, 49, 1538–1546.
27, 3642–3649.
B. Tamami and H. Yeganeh, J. Polym. Sci., Part A: Polym. 30 F. M. Fowkes, J. Phys. Chem., 1962, 66, 382–382.
Chem., 2001, 39, 3826–3831.
31 W. A. Zisman, Ind. Eng. Chem., 1963, 55, 18–38.
D.-J. Liaw, K.-L. Wang, F.-C. Chang, K.-R. Lee and J.-Y. Lai, 32 C. J. Van Oss, M. K. Chaudhury and R. J. Good, Chem. Rev.,
2
3
4
J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 2367–
374.
X. Wang, Y. Li, C. Gong, S. Zhang and T. Ma, J. Appl. Polym.
Sci., 2007, 104, 212–219.
1988, 88, 927–941.
2
33 J. Tsibouklis, M. Stone, A. A. Thorpe, P. Graham, T. G. Nevell
and R. J. Ewen, Langmuir, 1999, 15, 7076–7079.
34 S.-W. Kuo, Y.-C. Wu, C.-F. Wang and K.-U. Jeong, J. Phys.
Chem. C, 2009, 113, 20666–20673.
5
6
7
8
9
D.-J. Liaw, K.-L. Wang and F.-C. Chang, Macromolecules,
2
007, 40, 3568–3574.
A. Chichibabin and O. Zeide, Zh. Russ. Fiz.-Khim. O-va., 1914,
6, 1212.
35 H.-C. Lin, C.-F. Wang, S.-W. Kuo, P.-H. Tung, C.-F. Huang,
C.-H. Lin and F.-C. Chang, J. Phys. Chem. B, 2007, 111,
3404–3410.
4
R. L. Frank and R. P. Seven, J. Am. Chem. Soc., 1949, 71, 2629– 36 L. Qu and Z. Xin, Langmuir, 2011, 27, 8365–8370.
2635.
37 H.-D. Kim and H. Ishida, J. Phys. Chem. A, 2001, 106, 3271–
J. J. Li, in Name Reactions, Springer, 2009, pp. 107–109.
3280.
8698 | RSC Adv., 2014, 4, 8692–8698
This journal is © The Royal Society of Chemistry 2014