4
Fig. 4. (a) Photoluminescence lifetime images (λex = 405 nm) of Hela cells
Academic Program Development of Jiangsu Higher Education
Institutions (YX03001).
ACCEPTED MANUSCRIPT
incubated with the polymer (20 µg mL-1) at 37 °C for 2 h at 21% and 5% O2
concentrations, respectively. The magnification of the objective lens is 60×.
The luminescence signals were collected in the range of 520–600 nm. (b)
Time-gated luminescence intensity images (λex = 405 nm) of Hela cells
incubated with the polymer 20 µg mL-1 at 37 °C for 2 h at 21% or 5% O2
concentrations with different time delays. The magnification of the objective
lens is 60×. The luminescence signals were collected in the range of 410–580
nm
Supplementary data
Supplementary data (details of the CPEs synthesis, NMR, cell
culture) associated with this article can be found in Supporting
Information.
References
increased from 0.18 to 0.85 along with the decreasing of oxygen
level from 21% to 2.5%, which allows us to monitor the
concentration of oxygen.
[1] J. Aragonés, P. Fraisl, M. Base, P. Carmeliet, Cell Metab. 9 (2009)
11-22.
[2] W. R. Wilson, M. P. Hay, Nat. Rev. Cancer. 11 (2011) 393-410.
[3] K. Prass, A. Scharff, K. Ruscher, D. Lowl, C. Muselmann, I. Victorov,
K. Kapinya, U. Dirnagl, A. Meisel, Stroke. 34 (2003) 1981-1986.
[4] R. N. Frank, N. Engl. J. Med. 350 (2004) 48-58.
[5] P. Vaupel, K. Schlenger, C. Knoop, M. Hockel, Cancer Res. 51 (1991)
3316-3322.
[6] S. Kizaka-Kondoh, M. Inoue, H. Harada, M. Hiraoka, Cancer Sci. 94
(2003) 1021-1028.
[7] A. L. Harris, Nat. Rev. Cancer. 2 (2003) 38-47.
[8] E. K. Rofstad, H. Rasmussen, K. Galappathi, B. Mathiesen, K. Nilsen,
B. A. Graff, Cancer Res. 62 (2002) 1847-1853.
[9] T. Inoue, E. Kozawa, H. Okada, K. Inukai, S. Watanabe, T. Kikuta, Y.
Watanabe, T. Takenaka, S. Katayama, J. Tanaka, H. Suzuki, J. Am. Soc.
Nephrol. 22 (2011) 1429-1434.
3.7 TRLI images of intracellular O2 concentration
Considering the phosphorescence lifetime of CPE-Pdots
showed a good linear relationship with oxygen level, lifetime
imaging was also conducted to monitor the intracellular oxygen
level by using CPE-Pdots as a lifetime-based probe. The mean
emission lifetime τ was approximately 130 ns (21% O2) and 360
ns (2.5% O2), demonstrating the sensitive response of the lifetime
of CPE-Pdots towards O2 levels (Fig. 4a). The PLIM results
indicated that the emission signals from CPE-Pdots could be
distinguished
from
the
interference
of
short-lived
autofluorescence. Therefore, it is feasible to use the CPE-Pdots
as a potential lifetime probe for discriminating normoxia and
hypoxia in living cells.
[10] S. Iwaki, K. Hanaoka, W. Piao, T. Komatsu, T. Ueno, T. Terai, T.
Nagano, Bioorg. Med. Chem. Lett. 22 (2012) 2798-2802.
[11] S. Apisarnthanarax, K. S. C. Chao, Rad. Res. 163 (2005) 1-25.
[12] J. L. J. Dearlin, J. S. Lewis, G. E. D. Mullen, M. J. Welch, P. J. J.
Blower, Biol. Inorg. Chem. 7 (2002) 249-259.
[13] D. J. Yang, S. Wallace, A. Cherif, C. Li, M. B. Gretzer, E. E. Kim, D.
A. Podoloff, Radiology 194 (1995) 795-800.
[14] B. M. Fenton, S. F. Paoni, J. Lee, C. J. Koch, E. M. Lord, Brit. J.
Cancer 79 (1999) 464-471.
[15] H. L. Liu, Y. L. Song, K. L. Worden, X. Jiang, A. Constantinescu, R.
P. Mason, Appl. Opt. 39 (2000)5231-5243.
[16] K. Kiyose, K. Hanaoka, D. Oushiki, T. Nakamura, M. Kajimura, M.
Suematsu, H. Nishimatsu, T. Yamane, T. Terai, Y. Hirata, T. Nagano, J. Am.
Chem. Soc. 132 (2010) 15846-15848.
[17] G. M. Palmer, A. N. Fontanella, S. Q. Shan, G. Hanna, G. Q. Zhang,
C. L. Fraser, M. W. Dewhirst, Nat. Protoc. 6 (2011) 1355-1366.
[18] G. Zhang, G. M. Palmer, M.W. Dewhirst, C. L. Fraser, Nat. Mater. 8
(2009) 747-751.
[19] S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, T.
Takeuchi, Cancer Res. 70 (2010) 4490-448.
Furthermore, to eliminate the short-lived autofluorescence in
complicated conditions in living cells, TGLI imaging was used to
monitor the intracellular oxygen level (Fig. 4b). Without delay
time, the signals of images showed a similar intensity at 21% and
5% O2 concentrations, owing to the reference fluorescence from
short lifetime moieties. However, by exerting a 250 ns decay
time, the signal of the images at 21% O2 concentration
disappeared whereas the signal of the images at 5% O2
concentration was still observed, which ascribed to the long-lived
phosphorescence from Pt(II) complex of the CPE-Pdots. These
results indicated that hypoxia sensing could be more accurate by
exerting a long delay time. Therefore, TGLI imaging can avoid
anti-interference effectively and improve the signal to noise ratio
significantly on the basis of long-lived phosphorescence signal.
[20] G. E. Arteel, R.G. Thurman, J. M. Yates, J. A. Raleigh, Br. J. Cancer.
72 (1995) 889-895.
4. Conclusion
[21]
M. W. Gross, U. Karbach, K. Groebe, A. J. Franko, W.
In summary, a dual emissive and biocompatible hypoxia probe
CPE-Pdots has been developed for the high sensitive and reliable
imaging of hypoxia. The phosphorescence emissive intensity and
lifetime from CPE-Pdots showed an excellent sensitivity to
oxgen level. The probe can be readily used for ratiometric
measurement, allowing for the quantitative evaluation of the
hypoxia concentration in living cells with low cytotoxicity.
Furthermore, the CPE-Pdots can employ TRLI techniques to
monitor O2, which can remarkably improve the sensitivity and
accuracy. We believe that the CPE-Pdots can provide a specific
tool for hypoxia imaging, and will enrich the design of
ratiometric and lifetime-based probes for monitoring hypoxia in
living cells. Further work will focus on developing efficiently
NIR-excitable hypoxia probes in vivo.
Mueller-Klieser, Int. J. Cancer. 61 (1995) 567-573.
[22] M. R. Horsman, L. S. Mortensen, J. B. Petersen, M. Busk, J.
Overgaard, Nat. Rev. Clin. Oncol. 9 (2012) 674-687.
[23] M. M. Kleiter, D. E. Thrall, D.E. Malarkey, D. Y. W. Lee, S. C. Chou,
J. A. Raleigh, Int. J. Radiat. Oncol. Biol. Phys. 64 (2006) 592-602.
[24] Y. G. Wang, K. J. Zhou, G. Huang, C. Hensley, X. N. Huang, X. P.
Ma, T. Zhao, B. D. Sumer, R. J. DeBerardinis, J. M. Gao, Nat. Mater. 13
(2014) 204-212.
[25] Q. Zhao, F. Y. Li, C. H. Huang, Chem. Soc. Rev. 39 (2010) 3007-3030.
[26] K. Y. Zhang, Q. Yu, H. Wei, S. J. Liu, Q. Zhao, W. Huang, Chem.
Rev. 118 (2018) 1170-1839.
[27] D. B. Papkovsky, R. I. Dmitriev, Chem. Soc. Rev. 42 (2013)
8700-8732.
[28] C. F. Wu, B. Bull, K. Christensen, J. McNeill, Angew. Chem. 121
(2009) 2779-2783; Angew. Chem. Int. Ed. 48 (2009) 2741-2745.
[29] T. Yoshihara, Y. Yamaguchi, M. Hosaka, T. Takeuchi, S. Tobita,
Angew. Chem. Int. Ed. 51 (2012) 4148-4151.
[30] S. J. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita,
T. Takeuchi, Cancer. Res. 70 (2010) 4490-4498.
Acknowledgments
[31] T. C. Huang, X. Tong, Q. Yu, H. R.Yang, S. Guo, S. J. Liu, Q. Zhao,
K. Y. Zhang, W. Huang, J. Mater. Chem. C. 4 (2016) 10638-10645.
[32] Q. Zhao, X. B. Zhou, T. Y. Cao, K. Y. Zhang, L. J. Yang, S. J. Liu, H.
Liang, H. R. Yang, F. Y. Li, W. Huang, Chem. Sci. 6 (2015) 1825-1831.
[33] H. F. Shi, X. Ma, Q. Zhao, B. Liu, Q. Y. Qu, Z. F. An, Y. L. Zhao, W.
Huang, Adv. Funct. Mater. 24 (2014) 4823-4830.
This work was supported by the National Natural Science
Foundation of China (51473078, 21501098 and 21671108),
National Program for Support of Top-Notch Young Professionals,
Scientific and Technological Innovation Teams of Colleges and
Universities in Jiangsu Province (TJ215006), and Priority
[34] W. Lv, T. S. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. J. Liu,