Welcome to LookChem.com Sign In|Join Free

CAS

  • or

31255-10-4

Post Buying Request

31255-10-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

31255-10-4 Usage

Description

Bromo-PEG2-bromide is a PEG linker containing two bromide groups. The bromide (Br) is a very good leaving group for nucleophilic substitution reactions. The hydrophilic PEG spacer increases solubility in aqueous media.

Check Digit Verification of cas no

The CAS Registry Mumber 31255-10-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,1,2,5 and 5 respectively; the second part has 2 digits, 1 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 31255-10:
(7*3)+(6*1)+(5*2)+(4*5)+(3*5)+(2*1)+(1*0)=74
74 % 10 = 4
So 31255-10-4 is a valid CAS Registry Number.

31255-10-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name 1,2-bis(2-bromoethoxy)ethane

1.2 Other means of identification

Product number -
Other names AmbotzPEG1075

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:31255-10-4 SDS

31255-10-4Synthetic route

2,2'-[1,2-ethanediylbis(oxy)]bisethanol
112-27-6

2,2'-[1,2-ethanediylbis(oxy)]bisethanol

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

Conditions
ConditionsYield
Stage #1: 2,2'-[1,2-ethanediylbis(oxy)]bisethanol With carbon tetrabromide In dichloromethane for 0.25h; Appel reaction;
Stage #2: With triphenylphosphine In dichloromethane at 20℃; Appel reaction;
90%
With carbon tetrabromide; triphenylphosphine In tetrahydrofuran at 20℃; for 1h;90%
With carbon tetrabromide; triphenylphosphine In tetrahydrofuran at 20℃; for 12h;87%
triethylene glycol di-(p-toluenesulfonate)
19249-03-7

triethylene glycol di-(p-toluenesulfonate)

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

Conditions
ConditionsYield
With ammonium bromide In N,N-dimethyl-formamide at 85℃; for 5h; Product distribution; Further Variations:; Solvents;76%
With ammonium bromide In N,N-dimethyl-formamide at 85℃; for 5h; Product distribution / selectivity;76%
With lithium bromide In acetone Reflux;
sulfurous dibromide
507-16-4

sulfurous dibromide

2,2'-[1,2-ethanediylbis(oxy)]bisethanol
112-27-6

2,2'-[1,2-ethanediylbis(oxy)]bisethanol

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

Conditions
ConditionsYield
With pyridine In benzine at 65℃; for 17h; Reflux;60%
oxirane
75-21-8

oxirane

ethene
74-85-1

ethene

A

1,1'-oxybis(2-bromo-ethane)
5414-19-7

1,1'-oxybis(2-bromo-ethane)

B

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

Conditions
ConditionsYield
With bromine
1,4-dioxane
123-91-1

1,4-dioxane

ethene
74-85-1

ethene

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

Conditions
ConditionsYield
With bromine
1-bromo-2-(chloromethoxy)ethane
1462-35-7

1-bromo-2-(chloromethoxy)ethane

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

Conditions
ConditionsYield
With sodium; N,N-dimethyl-aniline In benzene
1,4-dioxane
123-91-1

1,4-dioxane

A

1,1'-oxybis(2-bromo-ethane)
5414-19-7

1,1'-oxybis(2-bromo-ethane)

B

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

C

1-bromo-2-{2-[2-(2-bromoethoxy)ethoxy]-ethoxy}ethane
31255-26-2

1-bromo-2-{2-[2-(2-bromoethoxy)ethoxy]-ethoxy}ethane

Conditions
ConditionsYield
With titanium(IV) bromide 1.) CH2Cl2, room temperature, 2.) CH2Cl2, reflux, 21 d; Yield given. Multistep reaction. Yields of byproduct given;
triethyleneglycol dimesylate
80322-82-3

triethyleneglycol dimesylate

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

Conditions
ConditionsYield
With lithium bromide In acetone for 20h; Heating;
With tetrabutylammomium bromide In acetonitrile at 50℃; for 16h; Inert atmosphere;2.84 g
dihexylamine
143-16-8

dihexylamine

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

{2-[2-(2-Dihexylamino-ethoxy)-ethoxy]-ethyl}-dihexyl-amine

{2-[2-(2-Dihexylamino-ethoxy)-ethoxy]-ethyl}-dihexyl-amine

Conditions
ConditionsYield
With sodium carbonate In acetonitrile at 81℃; for 18h;98%
1,5,9-Tritosyl-1,5,9-triazanonane
35980-64-4

1,5,9-Tritosyl-1,5,9-triazanonane

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

7,11,15-tris(p-tolylsulphonyl)-1,4-dioxa-7,11,15-triazacycloheptadecane
60147-31-1

7,11,15-tris(p-tolylsulphonyl)-1,4-dioxa-7,11,15-triazacycloheptadecane

Conditions
ConditionsYield
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 10h; Heating;96%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In water; toluene for 9h; Heating;96%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

toluene-4-sulfonamide
70-55-3

toluene-4-sulfonamide

N,N'-((ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-methylbenzenesulfonamide)
59945-35-6

N,N'-((ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-methylbenzenesulfonamide)

Conditions
ConditionsYield
With sodium carbonate In water for 4h; Heating;96%
With sodium carbonate 1.) 2 h, heated, 2.) 4 h, reflux; Yield given. Multistep reaction;
3-ethyl-3,4-dihydroquinoxalin-2(1H)-one
13297-35-3

3-ethyl-3,4-dihydroquinoxalin-2(1H)-one

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

1,8-bis(3-ethyl-1,2-dihydro-2-oxoquinoxalin-1-yl)-3,6-dioxaethane
827324-66-3

1,8-bis(3-ethyl-1,2-dihydro-2-oxoquinoxalin-1-yl)-3,6-dioxaethane

Conditions
ConditionsYield
With potassium hydroxide In 1,4-dioxane for 5h; Heating;96%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

diethylamine
109-89-7

diethylamine

1,8-bis(diethylamino)-3,6-dioxaoctane
42070-24-6

1,8-bis(diethylamino)-3,6-dioxaoctane

Conditions
ConditionsYield
at 21℃; for 48h;94%
With benzene
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

1,8-diazido-3,6-dioxaoctane
59559-06-7

1,8-diazido-3,6-dioxaoctane

Conditions
ConditionsYield
With sodium azide In N,N-dimethyl-formamide at 60℃; for 12h;93%
With sodium azide In N,N-dimethyl-formamide at 60℃; for 6h;82%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

methyl salicylate
119-36-8

methyl salicylate

1,10-bis(2'-methyl benzoate)-1,4,7,10-tetraoxadecane
201596-36-3

1,10-bis(2'-methyl benzoate)-1,4,7,10-tetraoxadecane

Conditions
ConditionsYield
With potassium carbonate In acetone for 168h; Heating;92%
With potassium carbonate In acetone Heating;
1,4,7-tritosyl-1,4,7-triazaheptane
56187-04-3

1,4,7-tritosyl-1,4,7-triazaheptane

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

7,10,13-tris(p-tolylsulphonyl)-1,4-dioxa-7,10,13-triazacyclopentadecane
60147-29-7

7,10,13-tris(p-tolylsulphonyl)-1,4-dioxa-7,10,13-triazacyclopentadecane

Conditions
ConditionsYield
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 10h; Heating;90%
With lithium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 10h; Heating;80%
1,5,9-Tritosyl-1,5,9-triazanonane
35980-64-4

1,5,9-Tritosyl-1,5,9-triazanonane

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

7,10,13-tris(p-tolylsulphonyl)-1,4-dioxa-7,10,13-triazacyclopentadecane
60147-29-7

7,10,13-tris(p-tolylsulphonyl)-1,4-dioxa-7,10,13-triazacyclopentadecane

Conditions
ConditionsYield
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In water; toluene for 9h; Heating;90%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

(15)N-2-nitro-4-methylphenol
87668-43-7

(15)N-2-nitro-4-methylphenol

(15)N-1,8-di-2-nitro-4-methylphenoxy-3,6-dioxaoctane

(15)N-1,8-di-2-nitro-4-methylphenoxy-3,6-dioxaoctane

Conditions
ConditionsYield
In N,N-dimethyl-formamide at 100℃;90%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

N,0-dimethylhydroxylamine
1117-97-1

N,0-dimethylhydroxylamine

N-(2-{2-[2-(Methoxy-methyl-amino)-ethoxy]-ethoxy}-ethyl)-O,N-dimethyl-hydroxylamine

N-(2-{2-[2-(Methoxy-methyl-amino)-ethoxy]-ethoxy}-ethyl)-O,N-dimethyl-hydroxylamine

Conditions
ConditionsYield
at 50℃; for 42h;90%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

tribenzylphosphine
7650-89-7

tribenzylphosphine

[ethane-1,2-diylbis(oxyethane-2,1-diyl)]bis[tribenzylphosphonium] dibromide
143251-93-8

[ethane-1,2-diylbis(oxyethane-2,1-diyl)]bis[tribenzylphosphonium] dibromide

Conditions
ConditionsYield
In acetonitrile for 48h; Heating;89%
In acetonitrile Heating;
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

3,7-dithianonane-1,9-dithiol
25676-62-4

3,7-dithianonane-1,9-dithiol

1,4,8,11-Tetrathia-14,17-dioxacyclononadecane
79028-44-7

1,4,8,11-Tetrathia-14,17-dioxacyclononadecane

Conditions
ConditionsYield
With caesium carbonate In N,N-dimethyl-formamide at 45 - 50℃;88%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

N,N',N'',N'''-tetratosyl-1,10-diamino-4,7-diazadecane
74676-47-4

N,N',N'',N'''-tetratosyl-1,10-diamino-4,7-diazadecane

7,11,14,18-tetrakis(p-tolylsulphonyl)-1,4-dioxa-7,11,14,18-tetra-azacycloicosane
120808-62-0

7,11,14,18-tetrakis(p-tolylsulphonyl)-1,4-dioxa-7,11,14,18-tetra-azacycloicosane

Conditions
ConditionsYield
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 10h; Heating;88%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In water; toluene for 9h; Heating;88%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

4-hydroxy-benzaldehyde
123-08-0

4-hydroxy-benzaldehyde

C13H17BrO4

C13H17BrO4

Conditions
ConditionsYield
With potassium carbonate In N,N-dimethyl-formamide for 0.5h;86%
3,6-dithiaoctan-1,8-dithiol
25423-55-6

3,6-dithiaoctan-1,8-dithiol

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

1,3,6,9-Tetrathia-18-crown-6
79028-42-5

1,3,6,9-Tetrathia-18-crown-6

Conditions
ConditionsYield
With caesium carbonate In N,N-dimethyl-formamide at 45 - 50℃;85%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

1,2-Bis-(2-selenocyanato-ethoxy)-ethane

1,2-Bis-(2-selenocyanato-ethoxy)-ethane

1, 10-diselana-4,7,13,16-tetraoxacyclooctadecane

1, 10-diselana-4,7,13,16-tetraoxacyclooctadecane

Conditions
ConditionsYield
With sodium tetrahydroborate In tetrahydrofuran; ethanol at 40 - 50℃; for 13h;85%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

dimethyl amine
124-40-3

dimethyl amine

1,2-bis-(2-dimethylamino-ethoxy)-ethane
3065-46-1

1,2-bis-(2-dimethylamino-ethoxy)-ethane

Conditions
ConditionsYield
at 25℃; for 40h;85%
4-(hydroxymethyl)-2-methoxy-5-nitrophenol
260417-00-3

4-(hydroxymethyl)-2-methoxy-5-nitrophenol

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

C14H20BrNO7

C14H20BrNO7

Conditions
ConditionsYield
With potassium carbonate In acetonitrile at 80℃; for 9h;85%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

7,16-bis<2-(p-tolylsulphonylamino)ethyl>-1,4,10-tetraoxa-7,16-diazacyclo-octadecane
76343-82-3

7,16-bis<2-(p-tolylsulphonylamino)ethyl>-1,4,10-tetraoxa-7,16-diazacyclo-octadecane

4,13-bis(p-tolylsulphonyl)-7,10,19,22,27,30-hexaoxa-1,4,13,16-tetra-aza<14.8.8>dotriacontane
113917-92-3

4,13-bis(p-tolylsulphonyl)-7,10,19,22,27,30-hexaoxa-1,4,13,16-tetra-aza<14.8.8>dotriacontane

Conditions
ConditionsYield
With sodium hydroxide; tetra-(n-butyl)ammonium iodide Heating;84%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 16h; Heating;84%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 16h; Heating;84%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

7,13-bis<2-(tolylsulphonylamino)ethyl>-1,4,10-trioxa-7,13-diazacyclopentadecane
113917-86-5

7,13-bis<2-(tolylsulphonylamino)ethyl>-1,4,10-trioxa-7,13-diazacyclopentadecane

4,13-bis(p-tolylsulphonyl)-7,10,19,22,27-pentaoxa-1,4,13,16-tetra-azabicyclo<14.8.5>-nonacosane
113917-91-2

4,13-bis(p-tolylsulphonyl)-7,10,19,22,27-pentaoxa-1,4,13,16-tetra-azabicyclo<14.8.5>-nonacosane

Conditions
ConditionsYield
With sodium hydroxide; tetra-(n-butyl)ammonium iodide Heating;83%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 16h; Heating;83%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 16h; Heating;83%
NH-pyrazole
288-13-1

NH-pyrazole

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

1,8-di(pyrazol-1-yl)-3,6-dioxaoctane
1170671-38-1

1,8-di(pyrazol-1-yl)-3,6-dioxaoctane

Conditions
ConditionsYield
Stage #1: NH-pyrazole With potassium hydroxide In dimethyl sulfoxide at 80℃; for 0.5h;
Stage #2: 1,2-bis-(2-bromo-ethoxy)-ethane In dimethyl sulfoxide at 80℃; for 1h;
83%
phthalimide
136918-14-4

phthalimide

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

2-(2-(2-(2-bromoethoxy)ethoxy)ethyl)-isoindole-1,3(2H)-dione
86927-04-0

2-(2-(2-(2-bromoethoxy)ethoxy)ethyl)-isoindole-1,3(2H)-dione

Conditions
ConditionsYield
With potassium carbonate In dimethyl sulfoxide for 240h; Ambient temperature;82.5%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

1,11-bis(p-tolylsulphonylamino)-3,6,9-trioxaundecane
59945-36-7

1,11-bis(p-tolylsulphonylamino)-3,6,9-trioxaundecane

10,19-bis-(p-tolylsulphonyl)-1,4,7,13,16-pentaoxa-10,19-diazacyclohemicosane
120808-60-8

10,19-bis-(p-tolylsulphonyl)-1,4,7,13,16-pentaoxa-10,19-diazacyclohemicosane

Conditions
ConditionsYield
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In water; toluene for 9h; Heating;82%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

1-hexadecyl-1H-imidazole
58175-55-6

1-hexadecyl-1H-imidazole

C44H84N4O2(2+)*2Br(1-)

C44H84N4O2(2+)*2Br(1-)

Conditions
ConditionsYield
In ethanol at 80℃; for 72h; Sealed tube;82%
piperidine
110-89-4

piperidine

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

1,2-bis-(2-piperidino-ethoxy)-ethane
76331-19-6

1,2-bis-(2-piperidino-ethoxy)-ethane

Conditions
ConditionsYield
at 70℃; for 13h;81%
With benzene
morpholine
110-91-8

morpholine

1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

4,4'-(3,6-dioxa-octane-1,8-diyl)-bis-morpholine
110422-21-4

4,4'-(3,6-dioxa-octane-1,8-diyl)-bis-morpholine

Conditions
ConditionsYield
at 26℃; for 10h;81%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

N,N'-Bis(p-tolylsulfonyl)-1,5-diamino-3-oxapentane
59945-34-5

N,N'-Bis(p-tolylsulfonyl)-1,5-diamino-3-oxapentane

7,13-bis(p-tolylsulphonyl)-1,4,10-trioxa-7,13-diazacyclopentadecane
74461-33-9

7,13-bis(p-tolylsulphonyl)-1,4,10-trioxa-7,13-diazacyclopentadecane

Conditions
ConditionsYield
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 10h; Heating;80%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In water; toluene for 9h; Heating;80%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 10h; Heating;77%
1,2-bis-(2-bromo-ethoxy)-ethane
31255-10-4

1,2-bis-(2-bromo-ethoxy)-ethane

N,N'-((ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-methylbenzenesulfonamide)
59945-35-6

N,N'-((ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-methylbenzenesulfonamide)

7,16-bis(p-tolylsulphonyl)-1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane
52601-78-2

7,16-bis(p-tolylsulphonyl)-1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane

Conditions
ConditionsYield
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 10h; Heating;80%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In toluene for 10h; Heating;79%
With sodium hydroxide; tetra-(n-butyl)ammonium iodide In water; toluene for 9h; Heating;79%

31255-10-4Relevant articles and documents

Manganese porphyrin-incorporated conjugated polymer nanoparticles for T1-enhanced magnetic resonance and fluorescent imaging

Yang, Tianshe,Feng, Wenguo,Hu, Changyong,Lv, Zhuang,Wei, Huanjie,Jiang, Jiayang,Liu, Shujuan,Zhao, Qiang

, p. 604 - 611 (2017)

Conjugated polymer nanoparticles (CPNs) possess many useful and fascinating properties, including high brightness, excellent photostability, good water-dispersibility, low cytotoxicity, and easy functionalization, showing promising application in bioimaging. In this work, one kind of optical/magnetic conjugated polyelectrolyte has been designed and synthesized by introducing Mn(III) porphyrin (T1-weighted relaxivity) into a fluorescent fluorene based polymer backbone. Fluorescent/magnetic conjugated polymer nanoparticles (FM-CPNs) were prepared by self-assembly in the phosphate buffer solution caused by their amphiphilic structures with hydrophobic backbones and hydrophilic side chains. Their photophysical properties have been investigated in details via UV–vis absorption and fluorescent emission spectra. Investigation of its magnetic properties has shown that the FM-CPNs exhibit high T1-weighted relaxivity value, making them promising candidates for T1-enhanced magnetic resonance imaging agent. Further cell imaging has been realized successfully using FM-CPNs as staining label, and cytotoxicity was evaluated by the methyl thiazolyl tetrazolium (MTT) assay.

Transmission of Unidirectional Molecular Motor Rotation to a Remote Biaryl Axis

Uhl, Edgar,Thumser, Stefan,Mayer, Peter,Dube, Henry

, p. 11064 - 11068 (2018)

Molecular motors undergo repetitive directional motions upon external energy input. A profound challenge is the defined transfer of directional motor motions to remote entities at the molecular scale. Herein, we present a molecular setup that allows for the transfer of the directional rotation of a light-powered motor unit onto a remote biaryl axis via an ethylene glycol chain link. Based on a combination of X-ray crystallographic analysis, ECD, and NMR experiments as well as a comprehensive theoretical assessment, we provide evidence for the coupled stepwise directional motions of both molecular units. With the presented setup, facile integration of molecular motor units into larger functional frameworks and complex molecular machines can be explored consciously in the future.

Dynamic Assemblies of Molecular Motor Amphiphiles Control Macroscopic Foam Properties

Chen, Shaoyu,Feringa, Ben L.,Leung, Franco King-Chi,Stuart, Marc C. A.,Wang, Chaoxia

, p. 10163 - 10172 (2020)

Stimuli-responsive supramolecular assemblies controlling macroscopic transformations with high structural fluidity, i.e., foam properties, have attractive prospects for applications in soft materials ranging from biomedical systems to industrial processes, e.g., textile coloring. However, identifying the key processes for the amplification of molecular motion to a macroscopic level response is of fundamental importance for exerting the full potential of macroscopic structural transformations by external stimuli. Herein, we demonstrate the control of dynamic supramolecular assemblies in aqueous media and as a consequence their macroscopic foam properties, e.g., foamability and foam stability, by large geometrical transformations of dual light/heat stimuli-responsive molecular motor amphiphiles. Detailed insight into the reversible photoisomerization and thermal helix inversion at the molecular level, supramolecular assembly transformations at the microscopic level, and the stimuli-responsive foam properties at the macroscopic level, as determined by UV-vis absorption and NMR spectroscopies, electron microscopy, and foamability and in situ surface tension measurements, is presented. By selective use of external stimuli, e.g., light or heat, multiple states and properties of macroscopic foams can be controlled with very dilute aqueous solutions of the motor amphiphiles (0.2 weight%), demonstrating the potential of multiple stimuli-responsive supramolecular systems based on an identical molecular amphiphile and providing opportunities for future soft materials.

Metal-organic frameworks constructed from crown ether-based 1,4-benzenedicarboxylic acid derivatives

Chen, Teng-Hao,Schneemann, Andreas,Fischer, Roland A.,Cohen, Seth M.

, p. 3063 - 3069 (2016)

A series of unprecedented crown ether- and thiacrown ether-derivatized benzene dicarboxylic acid (H2bdc) ligands has been synthesized and incorporated into the prototypical isoreticular metal-organic framework (IRMOF) and UiO-66 materials. In the case of UiO-66, only MOFs comprised from a mixed-ligand composition, requiring both unsubstituted bdc and crown ether containing ligands, could be prepared. These are among the few ligand derivatives, and resulting MOFs, that incorporate a macrocyclic group directly on the bdc ligand, providing a new, modular platform for exploring new supramolecular and coordination chemistry within MOFs.

Novel gemini micelles from dimeric surfactants with oxyethylene spacer chain. Small angle neutron scattering and fluorescence studies

De, Soma,Aswal, Vinod K.,Goyal, Prem S.,Bhattacharya, Santanu

, p. 6152 - 6160 (1998)

Three new gemini surfactants containing mono-, di-, and trioxyethylene spacer chains have been synthesized. Small angle neutron scattering (SANS) cross sections from the micellar aggregates of these dimeric amphiphiles Br-, n-C16H33NMe2+-CH2(CH 2OCH2)pCH2-N+Me 2-n-C16H33, Br-, (where p = 1, 2, and 3) in aqueous media (D2O) have been measured. The data have been analyzed using the Hayter and Penfold model for macro-ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis showed that the micellar morphology depends on both the nature and the length of the spacer unit. Detailed analysis of the data further indicates that the introduction of oxyethylene spacer is not sufficient enough to prevent looping of the spacer chain. Thus the average separation between the dimethylammonium ion headgroups is considerably lower than is expected from a fully extended conformation of the spacer chain. The micelles from these surfactants have also been characterized in terms of their critical micelle concentrations (cmc), microviscosities, and micropolarities on the basis of the information provided by micelle-solubilized fluorescent probes. These results indicate little difference in their micellar properties such as cmc, microviscosity, and micropolarity.

COMPOUND, DECORATIVE MATERIAL, DECORATED ARTICLE, AND INK COMPOSITION

-

Paragraph 0105; 0114-0116; 0122-0124, (2020/03/27)

To provide a compound exhibiting golden glossiness and providing a film having flexibility.SOLUTION: There is provided a compound represented by the formula (1). Rand Rare each independently a substituted or unsubstituted C1 to 12 alkyl group, -(CH)-COO-R, -(CH)-O-R, -(CH)-CONH-R, -(CH)-CONH-(CH)-OH or the like; Rto Rare each independently a C1 to 6 alkyl group; nis an integer of 2 to 10; and mto mare integer of 1 to 6.SELECTED DRAWING: None

A Novel Conjugate of Bis[((4-bromophenyl)amino)quinazoline], a EGFR-TK Ligand, with a Fluorescent Ru(II)-Bipyridine Complex Exhibits Specific Subcellular Localization in Mitochondria

Ilmi, Rashid,Tseriotou, Eleni,Stylianou, Panayiota,Christou, Yiota A.,Ttofi, Iakovia,Dietis, Nikolas,Pitris, Costas,Odysseos, Andreani D.,Georgiades, Savvas N.

, p. 4260 - 4273 (2019/10/16)

The epidermal growth factor receptor (EGFR) is a key target in anticancer research, whose aberrant function in malignancies has been linked to severe irregularities in critical cellular processes, including cell cycle progression, proliferation, differentiation, and survival. EGFR mutant variants, either transmembrane or translocated to the mitochondria and/or the nucleus, often exhibit resistance to EGFR inhibitors. The ability to noninvasively image and quantify EGFR provides novel approaches in the detection, monitoring, and treatment of EGFR-related malignancies. The current study aimed to deliver a new theranostic agent that combines fluorescence imaging properties with EGFR inhibition. This was achieved via conjugation of an in-house-developed ((4-bromophenyl)amino)quinazoline inhibitor of mutant EGFR-TK, selected from a focused aminoquinazoline library, with a [Ru(bipyridine)3]2+ fluorophore. A triethyleneglycol-derived diamino linker featuring (+)-ionizable sites was employed to link the two functional moieties, affording two unprecedented Ru conjugates with 1:1 and 2:1 stoichiometry of aminoquinazoline to the Ru complex (mono-quinazoline-Ru-conjugate and bis-quinazoline-Ru-conjugate, respectively). The bis-quinazoline-Ru-conjugate, which retains an essential inhibitory activity, was found by fluorescence imaging to be effectively uptaken by Uppsala 87 malignant glioma (grade IV malignant glioma) cells. The fluorescence imaging study and a time-resolved fluorescence resonance energy transfer study indicated a specific subcellular distribution of the conjugate that coincides with that of a mitochondria-targeted dye, suggesting mitochondrial localization of the conjugate and potential association with mitochondria-translocated forms of EGFR. Mitochondrial localization was further documented by the specific concentration of the bis-quinazoline-Ru-conjugate in a mitochondrial isolation assay.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 31255-10-4