RSC Advances
Paper
1
3 R. Plothe, I. Sittko, F. Lanfer, M. Fortmann, M. Roth,
V. Kolbach and J. C. Tiller, Poly(2-ethyloxazoline) as Matrix
for Highly Active Electrospun Enzymes in Organic Solvents,
Biotechnol. Bioeng., 2017, 114(1), 39–45.
Conflicts of interest
There are no conicts to declare.
1
4 F. S. Liao, W. S. Lo, Y. S. Hsu, C. C. Wu, S. C. Wang,
F. K. Shieh, J. V. Morabito, L. Y. Chou, K. C. W. Wu and
C. K. Tsung, Shielding against Unfolding by Embedding
Enzymes in Metal-Organic Frameworks via a de Novo
Approach, J. Am. Chem. Soc., 2017, 139(19), 6530–6533.
Acknowledgements
This study was supported by China Scholarship Council, the
National Natural Science Foundation of China (No. 21307161,
61335008 and 61874137). Authors would like to thank
Alexander M. Klibanov who gave lots of suggestion in experi- 15 U. Guzik, K. Hupert-Kocurek and D. Wojcieszynska,
ment details.
Immobilization as
Properties-Application to Oxidoreductases, Molecules, 2014,
9(7), 8995–9018.
6 K. Min and Y. J. Yoo, Recent progress in nanobiocatalysis for
enzyme immobilization and its application, Biotechnol.
Bioprocess Eng., 2014, 19(4), 553–567.
a Strategy for Improving Enzyme
1
References
1
1
2
K. V. N. Esguerra and J. P. Lumb, Selectivity in the Aerobic
Dearomatization of Phenols: Total Synthesis of
Dehydronornuciferine by Chemo- and Regioselective 17 M. M. Talukder, T. Takeyama, Y. Hayashi, J. C. Wu,
Oxidation, Angew. Chem., Int. Ed., 2018, 57(6), 1514–1518.
D. Ma, Z. C. Tu, H. Wang, L. Zhang, N. He and
D. J. McClements, Mechanism and kinetics of tyrosinase
inhibition by glycolic acid: a study using conventional
spectroscopy methods and hydrogen/deuterium exchange
T. Kawanishi, N. Shimizu and C. Ogino, Improvement in
enzyme activity and stability by addition of low molecular
weight polyethylene glycol to sodium bis(2-ethyl-L-hexyl)
sulfosuccinate/isooctane reverse micellar system, Appl.
Biochem. Biotechnol., 2003, 110(2), 101–112.
coupling with mass spectrometry, Food Funct., 2017, 8(1), 18 R. C. Rodrigues, C. Ortiz, A. Berenguer-Murcia, R. Torres and
1
22–131.
R. Fernandez-Lafuente, Modifying enzyme activity and
selectivity by immobilization, Chem. Soc. Rev., 2013, 42(15),
6290–6307.
3
4
5
Z. Ashraf, M. Raq, H. Nadeem, M. Hassan, S. Afzal,
M. Waseem, K. Afzal and J. Latip, Carvacrol derivatives as
mushroom tyrosinase inhibitors; synthesis, kinetics 19 E. T. Hwang and M. B. Gu, Enzyme stabilization by nano/
mechanism and molecular docking studies, PLoS One,
017, 12(5), 1–7.
microsized hybrid materials, Eng. Life Sci., 2013, 13(1), 49–
61.
2
M. Rolff, J. Schottenheim, H. Decker and F. Tuczek, Copper- 20 K. Labus, A. Turek, J. Liesiene and J. Bryjak, Efficient
O2 reactivity of tyrosinase models towards external
monophenolic substrates: molecular mechanism and
Agaricus bisporus tyrosinase immobilization on cellulose-
based carriers, Biochem. Eng. J., 2011, 56(3), 232–240.
comparison with the enzyme, Chem. Soc. Rev., 2011, 40(7), 21 M. Bilal, T. Rasheed, Y. Zhao, H. M. N. Iqbal and J. Cui,
4
077–4098.
“Smart” chemistry and its application in peroxidase
immobilization using different support materials, Int. J.
Biol. Macromol., 2018, 119, 278–290.
R. Z. Kazandjian and A. M. Klibanov, Regioselective
Oxidation of Phenols Catalyzed by Polyphenol Oxidase in
Chloroform, J. Am. Chem. Soc., 1985, 107(19), 5448–5450.
A. M. Klibanov, Enzyme-Catalyzed Processes in Organic-
Solvents, Ann. N. Y. Acad. Sci., 1987, 501, 129.
22 C. Silva, M. Martins, S. Jing, J. Fu and A. Cavaco-Paulo,
Practical insights on enzyme stabilization, Crit. Rev.
Biotechnol., 2018, 38(3), 335–350.
6
7
8
S. G. Burton, Biocatalysis with Polyphenol Oxidase – 23 V. M. Balcao and M. M. D. C. Vila, Structural and functional
a Review, Catal. Today, 1994, 22(3), 459–487.
P. V. Iyer and L. Ananthanarayan, Enzyme stability and
stabilization of protein entities: state-of-the-art, Adv. Drug
Delivery Rev., 2015, 93, 25–41.
stabilization – aqueous and non-aqueous environment, 24 D. Brady and J. Jordaan, Advances in enzyme
Process Biochem., 2008, 43(10), 1019–1032.
immobilisation, Biotechnol. Lett., 2009, 31(11), 1639–1650.
A. Zaks and A. M. Klibanov, The Effect of Water on Enzyme 25 D. M. Liu, J. Chen and Y. P. Shi, Tyrosinase immobilization
9
Action in Organic Media, J. Biol. Chem., 1988, 263(17),
017–8021.
0 E. Rubio, A. Fernandezmayorales and A. M. Klibanov, Effect
of the Solvent on Enzyme Regioselectivity, J. Am. Chem. Soc.,
on aminated magnetic nanoparticles by physical adsorption
combined with covalent crosslinking with improved
catalytic activity, reusability and storage stability, Anal.
Chim. Acta, 2018, 1006, 90–98.
8
1
1
991, 113(2), 695–696.
26 P. Wang, C. Qi, Y. Yu, J. Yuan, L. Cui, G. Tang, Q. Wang and
X. Fan, Covalent Immobilization of Catalase onto
Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-
Linking, Appl. Biochem. Biotechnol., 2015, 177(2), 472–485.
27 T. Jesionowski, J. Zdarta and B. Krajewska, Enzyme
immobilization by adsorption: a review, Adsorption, 2014,
20(5–6), 801–821.
1
1 D. A. Cowan and R. Fernandez-Lafuente, Enhancing the
functional properties of thermophilic enzymes by chemical
modication and immobilization, Enzyme Microb. Technol.,
2
011, 49(4), 326–346.
1
2 R. Fernandez-Lafuente, Stabilization of multimeric enzymes:
Strategies to prevent subunit dissociation, Enzyme Microb.
Technol., 2009, 45(6–7), 405–418.
39534 | RSC Adv., 2018, 8, 39529–39535
This journal is © The Royal Society of Chemistry 2018