RSC Advances
Paper
1286) and a HF frequency response analyzer (Schlumberger SI- 10 P. T. Nguyen, T. A. P. Phan, N. H. T. Ngo, T. V. Huynh and
1255). Different bias potentials from ꢁ0.3 V to open-circuit T. Lund, Solid State Ionics, 2018, 314, 98–102.
voltage value, synchronized with a modulated voltage of 11 C. T. Li, C. P. Lee, C. T. Lee, S. R. Li, S. S. Sun and K. C. Ho,
10 mV with a frequency range of 100 kHz to 10 MHz, were ChemSusChem, 2015, 8, 1244–1253.
applied in the dark. The data was analyzed by using Z-View 12 H. H. Lin, J. D. Peng, V. Suryanarayanan, D. Velayutham and
soware with the appropriate equivalent circuit.
K. C. Ho, J. Power Sources, 2016, 311, 167–174.
13 M. Ghavre, O. Byrne, L. Altes, P. K. Surolia, M. Spulak,
B. Quilty, K. R. Thampi and N. Gathergood, Green Chem.,
2014, 16, 2252–2265.
Conclusions
Three low-viscosity ionic liquids, based on 1-alkenyl-3- 14 W. S. Chi, H. Jeon, S. J. Kim, D. J. Kim and J. H. Kim,
methyimidazolium cations and triuoromethane (OTf-) Macromol. Res., 2013, 21, 315–320.
anion, where the alkenyl chain length was 3 to 5 carbon 15 Z. Wang, L. Wang, Y. Zhang, J. Guo, H. Li and F. Yan, RSC
atoms, were synthesized and implemented in DSC electro- Adv., 2017, 7, 13689–13695.
lytes. [ButMIm]OTf shows the lowest viscosity although its 16 Y.-F. Lin, C.-T. Li, C.-P. Lee, Y.-A. Leu, Y. Ezhumalai, R. Vittal,
structure does not have the shortest alkenyl chain. The solar
cells using [ButMIm]OTf in electrolytes also respond the best
M.-C. Chen, J.-J. Lin and K.-C. Ho, ACS Appl. Mater. Interfaces,
2016, 8, 15267–15278.
photovoltaic performance due to its best conductivity and 17 M. Gorlov and L. Kloo, Dalton Trans., 2008, 2655–2666.
low viscosity. The cells using [AMIm]OTf were obtained 18 J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508–3576.
better short circuit current values than the ones with [Pent- 19 M. A. Martins, C. P. Frizzo, A. Z. Tier, D. N. Moreira,
MIm]OTf. All the DSCs applied these three ionic liquids show
comparable performance to the present popular ones
N. Zanatta and H. G. Bonacorso, Chem. Rev., 2014, 114,
PR1–PR70.
demonstrating their high potential for the use in DSCs. For 20 K. Goossens, K. Lava, C. W. Bielawski and K. Binnemans,
further application of these ionic liquids in DSC devices, the Chem. Rev., 2016, 116, 4643–4807.
long term stability of DSCs with these ionic liquid electrolytes 21 P. C. Marr and A. C. Marr, Green Chem., 2016, 18, 105–128.
should be investigated.
22 J.-D. Decoppet, S. B. Khan, M. S. A. Al-Ghamdi, B. G. Alhogbi,
¨
A. M. Asiri, S. M. Zakeeruddin and M. Gratzel, Energy
Technol., 2017, 5, 321–326.
23 M. H. Khanmirzaei, S. Ramesh and K. Ramesh, Mater. Des.,
2015, 85, 833–837.
Conflicts of interest
There are no conicts to declare.
´
24 B. Gelinas and D. Rochefort, Electrochim. Acta, 2015, 162, 36–
44.
Acknowledgements
25 J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo,
This research is funded by Vietnam National Foundation for
Chem. Rev., 2015, 115, 2136–2173.
Science and Technology Development (NAFOSTED) under grant 26 G. M. A. Girard, M. Hilder, H. Zhu, D. Nucciarone,
number 104.03-2014.26.
K. Whitbread, S. Zavorine, M. Moser, M. Forsyth,
D. R. MacFarlane and P. C. Howlett, Phys. Chem. Chem.
Phys., 2015, 17, 8706–8713.
References
27 G. P. Lau, H. N. Tsao, C. Yi, S. M. Zakeeruddin, M. Gratzel
and P. J. Dyson, ChemSusChem, 2015, 8, 255–259.
¨
1 B. O'Regan and M. Gratzel, Nature, 1991, 353, 737–740.
2 A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, 28 N. Papageorgiou, J. Electrochem. Soc., 1996, 143, 3099–3108.
¨
Chem. Rev., 2010, 110, 6595–6663.
29 P. Wang, S. M. Zakeeruddin, J.-E. Moser and M. Gratzel, J.
3 L. M. Peter, J. Phys. Chem. Lett., 2011, 2, 1861–1867.
Phys. Chem. B, 2003, 107, 13280–13285.
4 Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, 30 P. Wang, S. M. Zakeeruddin, R. Humphry-Baker and
¨
M. Gratzel, Chem. Mater., 2004, 16, 2694–2696.
ACS Nano, 2010, 4, 6032–6038.
5 A. G. Kontos, T. Stergiopoulos, V. Likodimos, D. Milliken, 31 P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker
¨
H. Desilvesto, G. Tulloch and P. Falaras, J. Phys. Chem. C,
2013, 117, 8636–8646.
6 D. Bari, N. Wrachien, R. Tagliaferro, S. Penna, T. M. Brown,
A. Reale, A. Di Carlo, G. Meneghesso and A. Cester,
Microelectron. Reliab., 2011, 51, 1762–1766.
and M. Gratzel, J. Am. Chem. Soc., 2004, 126, 7164–7165.
32 P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser,
J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov,
¨
S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 2005,
127, 6850–6856.
7 P. Tuyet Nguyen, R. Degn, H. Thai Nguyen and T. Lund, Sol. 33 Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang,
Energy Mater. Sol. Cells, 2009, 93, 1939–1945.
S. M. Zakeeruddin and M. Gratzel, Nat. Mater., 2008, 7,
626–630.
34 M. Bidikoudi, L. F. Zubeir and P. Falaras, J. Mater. Chem. A,
2014, 2, 15326–15336.
8 P. Tuyet Nguyen, A. Rand Andersen, E. Morten Skou and
T. Lund, Sol. Energy Mater. Sol. Cells, 2010, 94, 1582–1590.
9 T. Lund, P. T. Nguyen, H. M. Tran, P. Pechy,
¨
S. M. Zakeeruddin and M. Gratzel, Sol. Energy, 2014, 110, 35 N. V. Ignat'ev, U. Welz-Biermann, A. Kucheryna, G. Bissky
96–104.
and H. Willner, J. Fluorine Chem., 2005, 126, 1150–1159.
13146 | RSC Adv., 2018, 8, 13142–13147
This journal is © The Royal Society of Chemistry 2018