completely clear at this stage, we speculated that spherical
particles might be stabilized by numerous subtle noncovalent
interactions of neighboring metallocycles such as van der Waals
and p–p stacking interactions. In the case of 3–6, the extra
hydrogen-bonding interactions among the phenolic hydroxyl
groups, the OAcꢂ anions and the solvent DMSO molecules
might serve as the bridge to connect metallogelators, which leads
to fusion of spherical particles to form well-developed three-
dimensional networks. The hydrogen-bonding interactions of
the hydroxyl groups could be demonstrated by IR studies of free
ligands and their corresponding metallogels. For example, in a
dry gel of {[Pd-3](OAc)2}n, the OH-stretching band of 3 was
shifted from 3441 cmꢂ1 to 3430 cmꢂ1 (Fig. S7w).
and to apply this strategy to other metallogel systems. The
work may open a way for the design of a new generation of
vesicles from nontypical amphiphilic architectures.
This work was supported by grants from the National NSF
of China (Nos. 20702035, 20602027 and 20972102) and
PCSIRT0846. We thank the Centre of Testing & Analysis,
Sichuan University for AFM, TEM, NMR, and X-ray
measurements.
Notes and references
1 (a) J.-M. Lehn, Supramolecular Chemistry: Concepts
and Perspectives, VCH, Weinheim, 1995; (b) S. Kitagawa,
R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43, 2334;
(c) X. Roy and M. J. MacLachlan, Chem.–Eur. J., 2009, 15, 6552;
(d) W. Lin, W. J. Rieter and K. M. L. Taylor, Angew. Chem., Int.
Ed., 2009, 48, 650.
2 (a) M. A. Alam, M. Nethaji and M. Ray, Angew. Chem., Int. Ed.,
2003, 42, 1940; (b) X.-C. Huang, J.-P. Zhang and X.-M. Chen,
J. Am. Chem. Soc., 2004, 126, 13218; (c) L. Dobrzan
G. O. Lloyd, H. G. Raubenheimer and L. J. Barbour, J. Am.
Chem. Soc., 2005, 127, 13134; (d) L. Dobrzanska, G. O. Lloyd,
H. G. Raubenheimer and L. J. Barbour, J. Am. Chem. Soc., 2006,
128, 698; (e) I. Imaz, D. Maspoch, C. Rodrıguez-Blanco,
J. M. Perez-Falcon, J. Campo and D. Ruiz-Molina, Angew. Chem.,
Int. Ed., 2008, 47, 1857; (f) I. Imaz, J. Hernando, D. Ruiz-Molina
and D. Maspoch, Angew. Chem., Int. Ed., 2009, 48, 2325.
3 S. Zhang, S. Yang, J. Lan, S. Yang and J. You, Chem. Commun.,
2008, 6170.
4 S. Zhang, S. Yang, J. Lan, Y. Tang, Y. Xue and J. You, J. Am.
Chem. Soc., 2009, 131, 1689.
5 L. Yan, Y. Xue, G. Gao, J. Lan, F. Yang, X. Su and J. You,
Chem.–Eur. J., 2010, 16, 2250.
6 (a) J. H. van Esch, M. Damen, M. C. Feiters and R. J. M. Nolte,
Recl. Trav. Chim. Pays-Bas, 1994, 113, 186; (b) T. Rispens and J. B.
F. N. Engberts, Org. Lett., 2001, 3, 941; (c) D. Li, J. Zhang,
K. Landskron and T. Liu, J. Am. Chem. Soc., 2008, 130, 4226;
(d) C. P. Pradeep, M. F. Misdrahi, F.-Y. Li, J. Zhang, L. Xu,
D.-L. Long, T. Liu and L. Cronin, Angew. Chem., Int. Ed., 2009,
48, 8309.
´
ska,
´
ð1Þ
´
´
´
One advantage of metallogels is the possibility to impart
collective chemical and physical properties of metal ions that
are usually observed in the crystalline and solution state to highly
processable gel-phase materials.11 The opaque metallogels
formed by 3–6 and Pd(OAc)2 were stable enough to be no
longer soluble in other solvents including acetone, dichloro-
methane, THF, hexane, toluene, methanol, and itself without
any visible collapse even over a long period of time (several
months). Subsequently, the metallogel of {[Pd-3](OAc)2}n was
used as a medium for the direct phenylation of indole with
phenyl boronic acid (eqn (1)). The gel of {[Pd-3](OAc)2}n
afforded the corresponding cross-coupling product in ca.
50% yield. In sharp contrast, both a soluble complex of
{[Pd-3](OAc)2}n and a dry gel of {[Pd-3](OAc)2}n almost lost
the catalytic activity (less than 5% yield). It is reasonable
to assume that the enhanced activity of gels might be related
to high surface area similar to that of amorphous MOFs.12
Porous collapse of dry gels might result in a relatively smaller
surface area, which leads to hardly delivering the reac-
tion substrates to the metal sites. Despite a moderate yield
of cross-coupling product obtained, it would give a clue to
exploring a new generation of metallogels exhibiting excellent
catalysis in the future.
7 (a) P. Samorı, V. Francke, T. Mangel, K. Mullen and J. P. Rabe,
´
¨
Opt. Mater., 1998, 9, 390; (b) A. Ajayaghosh, R. Varghese,
S. Mahesh and V. K. Praveen, Angew. Chem., Int. Ed., 2006, 45,
7729.
8 (a) M. Yang, W. Wang, F. Yuan, X. Zhang, J. Li, F. Liang, B. He,
B. Minch and G. Wegner, J. Am. Chem. Soc., 2005, 127, 15107;
(b) A. Ajayaghosh, R. Varghese, V. K. Praveen and S. Mahesh,
Angew. Chem., Int. Ed., 2006, 45, 3261; (c) C. Schmuck, T. Rehm,
K. Klein and F. Grohn, Angew. Chem., Int. Ed., 2007, 46, 1693;
¨
(d) A. Ajayaghosh, P. Chithra and R. Varghese, Angew. Chem.,
Int. Ed., 2007, 46, 230; (e) W. Cai, G.-T. Wang, Y.-X. Xu,
X.-K. Jiang and Z.-T. Li, J. Am. Chem. Soc., 2008, 130, 6936.
9 (a) K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata,
T. Komori, F. Ohseto, K. Ueda and S. Shinkai, J. Am. Chem. Soc.,
In summary, we have described the self-assembly of the
conformationally flexible bismethylimidazolyl ligands with
Pd(OAc)2. The ligands 1–2 that do not contain the hydroxyl
group and Pd(OAc)2 self-assemble into a new type of metal–
organic vesicles. The ligands 3–6 with the hydroxyl group and
Pd(OAc)2 evolve into a three-dimensional globular network
thereby resulting in the immobilization of organic fluids after
aging. Thus, depending on whether the ligands provide the
hydrogen bonding donor, a switching of vesicles to globular
networks is achieved. The metallogel materials further show
catalytic activity for the cross-coupling of indole with phenyl
boronic acid. Efforts are now in progress to investigate the full
scope of the transformation to obtain a detailed mechanism
1994, 116, 6664; (b) T. Klawonn, A. Gansauer, I. Winkler,
¨
T. Lauterbach, D. Franke, R. J. M. Nolte, M. C. Feiters,
H. Borner, J. Hentschel and K. H. Dotz, Chem. Commun., 2007,
1894.
¨
¨
10 The crystal parameters, data collection and refinement results for
CCDC 759098 (8) are summarized in Supporting Information
(Table S3w).
11 For highlights and reviews, see: (a) F. Fages, Angew. Chem., Int.
Ed., 2006, 45, 1680; (b) H. Maeda, Chem.–Eur. J., 2008, 14, 11274;
(c) G. Cravotto and P. Cintas, Chem. Soc. Rev., 2009, 38, 2684;
(d) M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke and
J. W. Steed, Chem. Rev., 2010, 110, 1960.
12 (a) Z. Wang, G. Chen and K. Ding, Chem. Rev., 2009, 109, 322;
(b) D. Farrusseng, S. Aguado and C. Pinel, Angew. Chem., Int. Ed.,
2009, 48, 7502; (c) B. Xing, M.-F. Choi and B. Xu, Chem.–Eur. J.,
2002, 8, 5028.
ꢀc
This journal is The Royal Society of Chemistry 2010
3940 | Chem. Commun., 2010, 46, 3938–3940