Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC04436K
COMMUNICATION
Journal Name
The nonporous nature of
1
towards feed gases like H
2
and O
2
Kitagawa, Acc. Chem. Res., 2013, 46, 2376; (c) T. Yamada, K.
Otsubo, R. Makiura and H. Kitagawa, Chem. Soc. Rev., 2013,
42, 6655; (d) P. Ramaswamy, M. E. Wong and G. K. H.
gases at RT is also advantageous to avoid possible fuel mixing,
however the detailed investigation is required (Figure S23).
Shimizu, Chem. Soc. Rev., 2014, 43, 5913.
In conclusion, we report here a highly hydroxide
5
6
(a) L. Saiz and M. L. Klein, Acc. Chem. Res., 2002, 35, 482; (b)
B. C. Wood and N. Marzari, Phys. Rev. B, 2007, 76, 134301-1.
(a) M. Sadakiyo, T. Yamada and H. Kitagawa, J. Am. Chem.
Soc., 2009, 131, 9906; (b) F. Costantino, A. Donnadio and M.
Casciola, Inorg. Chem., 2012, 51, 6992; (c) S. Sen, N. N. Nair,
T. Yamada, H. Kitagawa and P. K. Bharadwaj, J. Am. Chem.
Soc., 2012, 134, 19432; (d) N. C. Jeong, B. Samanta, C. Y. Lee,
O. K. Farha and J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 51;
(e) V. G. Ponomareva, K. A. Kovalenko, A. P. Chupakhin, D. N.
Dybtsev, E. S. Shutova and V. P. Fedin, J. Am. Chem. Soc.,
2012, 134, 15640; (f) S. S. Nagarkar, S. M. Unni, A. Sharma, S.
conducting MOF [Ni (μ-pymca) ]OH∙nH O with in-situ
2
2
3
-
-
incorporated OH anions (Type A, OH ion conductor) for the
first time. The MOF exhibits excellent chemical stability
towards boiling water and highly basic conditions and showed
-4
-1
hydroxide conductivity of 0.8 × 10 Scm at 27 °C and 99 % RH
-
which is comparable to the best known OH conducting MOF
reports. Further the activation energy for hydroxide
conduction was found to be 0.19 eV which is comparable to
-
free OH ions in liquid suggest the interference free transport
Kurungot and S. K. Ghosh, Angew. Chem. Int. Ed., 2014, 53
,
-
of OH ions in MOF. We believe that the present approach for
2638; (g) D. Umeyama, S. Horike, M. Inukai, T. Itakura, S.
Kitagawa, J. Am. Chem. Soc., 2012, 134, 12780.
(a) M. Sadakiyo, H. Kasai, K. Kato, M. Takata and M. J.
Yamauchi, J. Am. Chem. Soc., 2014, 136, 1702; (b) C. Mao, R.
A. Kudla, F. Zao, X. Zhao, L. J. Mueller, X. Bu and P. Feng, J.
Am. Chem. Soc., 2014, 136, 7579; (c) C. Liu, S. Feng, Z.
Zhuang, D. Qi, G. Li, C. Zhao, X. Li and H. Na, Chem.
Commun., 2015, 51, 12629; (d) C. Montoro, P. Ocon, F.
Zamora, J. A. R. Navarro, Chem Eur. J., 2016, 22, 1646.
(a) G. Merle, M. Wessling and K. J. Nijmeijer, Membr. Sci.
-
synthesis of highly OH conductive MOFs will not only
stimulate the research in less explored field of solid-state
anion conductors but also lessons learned from the present
approach will open new avenues for the design and
development of different classes of anion conducting
materials.
7
8
S. S. N. and B. A. thank CSIR India for research fellowship. A. V.
D. thanks IISER Pune for research fellowship. This work was
partially supported by MHRD-FAST.
2011, 377, 1; (b) J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M.
Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E.
Mustain, K. Nijmeijer, K. Scott, T. Xuk and L. Zhuang, Energy
Environ. Sci., 2014, 7, 3135.
9
1
(a) J. Pan, C. Chen, L. Zhuang and J. Lu, Acc. Chem. Res., 2012,
45, 473; (b) Y. J. Wang, J. Qiao, R. Baker and J. Zhang, Chem.
Soc. Rev., 2013, 42, 5768.
Notes and references
1
(a) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M.
O’Keeffe and O. M. Yaghi, Science, 2002, 295, 469; (b) S.
Horike, S. Shimomura and S. Kitagawa, Nat. Chem., 2009,
0 (a) Y. J. Colon and R. Q. Snurr, Chem. Soc. Rev., 2014, 43
735; (b) K. J. Msayib, D. Book, P. M. Budd, N. Chaukura, K.
D. M. Harris, M. Helliwell, S. Tedds, A. Walton, J. E. Warren,
M. Xu and N. B. McKeown, Angew. Chem. Int. Ed., 2009, 48
273.
,
5
1
,
695.
(a) H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi,
Science, 2013, 341, 1230444; (b) S. S. Nagarkar, A. V. Desai
,
2
3
3
1
1
1 A. Rodriguez-Dieguez, J. Cano, R. Kivekas, A. Debdoubi and E.
Colacio, Inorg. Chem., 2007, 46, 2503.
2 (a) C. Volkringer, H. Leclerc, J.-C. Lavalley, T. Loiseau, G.
and S. K. Ghosh, Chem. Asian J., 2014,
(a) J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev., 2012, 112, 869;
b) Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev., 2014,
, 5657; (c) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C.-
9, 2358.
(
Ferey, M. Daturi and A. J. Vimont, Phys. Chem. C, 2012, 116
710; (b) D. F. Sava, V. Ch. Kravtsov, F. Nouar, L. Wojtas, J. F.
Eubank and M. Eddaoudi, J. Am. Chem. Soc., 2008, 130
768; (c) A. K. Bar, R. Chakrabarty, K.-W. Chi, S. R. Batten and
,
43
5
Y. Su, Chem. Soc. Rev., 2014, 43, 6011; (d) L. E. Kreno, K.
Leong, O. K. Farha, M. Allendorf, R. P. Duyne and J. T. Hupp,
Chem. Rev., 2012, 112, 1105; (e) Z. Hu, B. J. Deibert and J. Li,
Chem. Soc. Rev., 2014, 43, 5815; (f) S. S. Nagarkar, B. Joarder,
A. K. Chaudhari, S. Mukherjee and S. K. Ghosh, Angew.
Chem. Int. Ed., 2013, 52, 2881; (g) J. D. Rocca, D. Liu and W.
Lin, Acc. Chem. Res., 2010, 44, 957; (h) P. Horcajada, R. Gref,
T. Baati, P. K. Allan, G. Maurine, P. Couvreur, G. Ferey, R.
Morris and C. Serre, Chem. Rev., 2012, 112, 1232; (i) S. S.
Nagarkar, T. Saha, A. V. Desai, P. Talukdar and S. K. Ghosh,
Sci. Rep. 2014, DOI: 10.1038/srep07053; (j) G. J. Halder, C. J.
Kepert, B. Moubaraki, K. S. Murray and J. D. Cashion, Science,
,
3
P. S. Mukherjee, Dalton. Trans., 2009, 3222.
3 S. E. Ashbrook, D. M. Dawson and V. R. Seymour, Phys.
Chem. Chem. Phys., 2014, 16, 8223.
4 (a) T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B.
Moulin, D. Heurtaux, G. Clet, A. Vimont, J.-M. Greneche, B. L.
Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J.C. La-
1
1
valley, M. Daturi and G. Ferey, J. Am. Chem. Soc., 2010, 132
127; (b) W. H. Robertson, E. G. Diken, E. A. Price, J.-W. Shin
and M. A. Johnson, Science, 2003, 299, 1367; (c) M. Morita,
,
1
H. Takahashi, S. Yabushita, K. Takahashi, Phys. Chem. Chem.
Phys., 2014, 16, 23143.
5 R. A. Huggins, Advanced batteries: materials science aspects,
Springer Science, New York, 2008, 339.
6 (a) K. Tadanaga, Y. Furukawa, A. Hayashi and M.
Tatsumisago, Adv. Mater., 2010, 22, 4401; (b) T. Hibino, Y.
Shen, M. Nishida and M. Nagao, Angew. Chem. Int. Ed., 2012,
51, 10786.
7 N. Agmon, Chem. Phys. Lett., 2000, 319, 247.
2
1
002, 298, 1762; (k) M. Kurmoo, Chem. Soc. Rev., 2009, 38,
353; (l) S. S Nagarkar, R. Das, P. Poddar and S. K, Ghosh,
1
1
Inorg. Chem., 2012, 51, 8317; (m) Y. Inokuma, S. Yoshioka, J.
Ariyoshi, T. Arai, Y. Hitora, K. Takada, S. Matsunaga, K.
Rissanen and M. Fujita, Nature, 2013, 495, 461; (n) A. A.
Talin, A.Centrone, A. C. Ford, M. E. Foster, V. Stavila, P.
Haney, A. Kinney, V.Szalai, F. E.Gabaly, H. P. Yoon, F. Leonard
and M. Allendorf, Science, 2014, 343, 66; (o) S.-L. Li and Q.
Xu, Energy Environ. Sci., 2013, 6, 1656; (p) T. Zhang and W.
Lin, Chem. Soc. Rev., 2014, 43, 5982; (q) M. L. Aubrey,
R.Ameloot, B. M. Wiers, J. R. Long, Energy Environ. Sci.
1
1
8 (a) M. E. Tuckerman, D. Marx and M. Parrinello, Nature,
2
002, 417, 925; (b) R. Ludwig, Angew. Chem. Int. Ed., 2003,
, 258.
4
2
2014,7, 667.
4
(a) M. Yoon, K. Suh, S. Natarajan and K. Kim, Angew. Chem.
Int. Ed., 2013, 52, 2688; (b) S. Horike, D. Umeyama and S.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins