Journal of the American Chemical Society
Page 4 of 5
are oriented in a significantly more coplanar manner in com-
Chem. 2013, 5, 739–744. (h) Sakamoto, Y.; Suzuki, T. J. Am. Chem.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
pound 6 as compared to the parent hydrocarbon.
Soc. 2013, 135, 14074–14077. (i) Miller, R. W.; Duncan, A. K.;
Schneebeli, S. T.; Gray, D. L.; Whalley, A. C. Chem. Eur. J. 2014, 20,
Compound 6 is soluble in most organic solvents, resulting
in an orange solution with weak purple fluorescence when
irradiated with UV light. In chloroform, four absorption
peaks at 238, 253, 273 and 300 nm could be resolved in the
3
705–3711. (j) Cheung, K. Y.; Xu, X.; Miao, Q. J. Am. Chem. Soc. 2015,
1
37, 3910–3914. (k) Kato, K.; Segawa, Y.; Scott, L. T.; Itami, K. Chem.
Asian J. 2015, 10, 1635–1639.
(4) (a) Pascal, R. A.; McMillan, W. D.; Van Engen, D. J. Am. Chem.
Soc. 1986, 108, 5652–5653. (b) Lu, J.; Ho, D. M.; Vogelaar, N. J.; Kraml,
C. M.; Pascal, R. A. J. Am. Chem. Soc. 2004, 126, 11168–11169. (c) Col-
lins, S. K.; Grandbois, A.; Vachon, M. P.; Côté, J.; Angew. Chem. Int.
Ed. 2006, 45, 2923–2926. (d) Xiao, J.; Duong, H. M.; Liu, Y.; Shi, W.;
Ji, L.; Li, G.; Li, S.; Liu, X.-W.; Ma, J.; Wudl, F.; Zhang, Q. Angew.
Chem. Int. Ed. 2012, 51, 6094–6098. (e) Arslan, H.; Uribe-Romo, F. J.;
Smith, B. J.; Dichtel, W. R. Chem. Sci. 2013, 4, 3973–3978. (f) Pradhan,
A.; Dechambenoit, P.; Bock, H.; Durola, F. J. Org. Chem. 2013, 78,
2266–2274. (g) Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc.
1
5
UV-absorption spectrum. The low-energy absorption onset
was found to be 347 nm, reflecting a HOMO-LUMO gap of
3.57 eV. In the fluorescence spectrum, an emission maximum
was observed at 380 nm upon excitation at 300 nm. The
cyclic voltammogram of 6 in dichloromethane exhibits one
quasi-reversible oxidation wave with half-wave oxidation
potential of 1.09 V vs ferrocenium/ferrocene (first oxidation
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
5
onset at 0.82 eV). The HOMO and LUMO energy levels of 6
1
5
2
015, 137, 7763–7768. (h) Kashihara, H.; Asada, T.; Kamikawa, K.
Chem. Eur. J. 2015, 21, 6523–6527.
5) Scholl, R.; Mansfeld, J. Ber. Dtsch. Chem. Ges. 1910, 43, 1734–1746.
were estimated to be −5.92 eV and −2.35 eV, respectively.
In summary, we reported the synthesis of an unprecedent-
ed wizard hat-shaped PAC 6 based on the TBTQ framework
using a three-fold Scholl-type cycloheptatriene formation
reaction. The structural features, crystallographic packing
modes, optical and electronic properties of the TBTQ-PAC 6
were also examined. This new synthetic protocol, in princi-
(
(6) Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T.
Angew. Chem. Int. Ed. 2013, 52, 9900–9930.
(7) (a) Iyer, V. S.; Wehmeier, M.; Brand, J. D.; Keegstra, M. A.;
Müllen, K. Angew. Chem. Int. Ed. 1997, 36, 1604–1607. (b) Simpson, C.
D.; Brand, J. D.; Berresheim, A. J.; Przybilla, L.; Räder, H. J.; Müllen,
K. Chem. Eur. J. 2002, 8, 1424–1429. (c) Yang, X.; Dou, X.;
Rouhanipour, A.; Zhi, L.; Räder, H. J.; Müllen, K. J. Am. Chem. Soc.
ple, could also be applied to C -symmetrical 1,5,9-triaryl-
3
14b,14c,24
TBTQ compounds as starting materials.
With the six
2
008, 130, 4216–4217. (d) Vo, T. H.; Shekhirev, M.; Kunkel, D. A.;
Orange, F.; Guinel, M. J. F.; Enders, A.; Sinitskii, A. Chem. Commun.
014, 50, 4172–4174. (e) Lorbach, D.; Keerthi, A.; Figueira-Duarte, T.
M.; Baumgarten, M.; Wagner, M.; Müllen, K. Angew. Chem. Int. Ed.
016, 55, 418–421.
methoxy groups available for further manipulations, exten-
sion of the curved aromatic surface to warped nanogra-
phenes such as 7 is underway in our laboratories.
2
2
ASSOCIATED CONTENT
(8) (a) Rempala, P.; Kroulík, J.; King, B. T. J. Am. Chem. Soc. 2004,
126, 15002–15003. (b) Rempala, P.; Kroulík, J.; King, B. T. J. Org. Chem.
Supporting Information
2006, 71, 5067–5081. (c) King, B. T.; Kroulík, J.; Robertson, C. R.;
Experimental details, NMR, X-ray, UV and cyclic voltamme-
try data (PDF)
Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem.
2007, 72, 2279–2288. (d) Ormsby, J. L.; Black, T. D.; Hilton, C. L.;
Bharat; King, B. T. Tetrahedron 2008, 64, 11370–11378.
(9) (a) Tellenbröker, J.; Kuck, D. Angew. Chem., Int. Ed. 1999, 38,
919–922. (b) Tellenbröker, J.; Kuck, D. Eur. J. Org. Chem. 2001, 1483–
1489. (c) Kuck, D. Chem. Rev. 2006, 106, 4885–4925.
AUTHOR INFORMATION
Corresponding Author
(
(
10) Mughal, E. U.; Kuck, D. Chem. Commun. 2012, 48, 8880–8882.
11) Mughal, E. U.; Neumann, B.; Stammler, H.-G.; Kuck, D. Eur. J.
*hfchow@cuhk.edu.hk
*dietmar.kuck@uni-bielefeld.de
Org. Chem. 2014, 2014, 7469–7480.
(12) An, P.; Chow, H.-F.; Kuck, D. Synlett 2016, 27, 1255–1261.
(13) Kirchwehm, Y.; Damme, A.; Kupfer, T.; Braunschweig, H.;
Krüger, A. Chem. Commun. 2012, 48, 1502–1504.
Notes
The authors declare no competing financial interests.
(
14) (a) Kuck, D. Angew. Chem. Int. Ed. 1984, 23, 508–509. (b) Xu, W.-
R.; Chow, H.-F.; Cao, X.-P.; Kuck, D. J. Org. Chem. 2014, 79, 9335–
346. (c) Xu, W.-R.; Chow, H.-F.; Cao, X.-P.; Kuck, D. J. Org. Chem.
015, 80, 4221–4222.
(15) See Supporting Information for details.
16) Feng, X.; Wu, J.; Enkelmann, V.; Müllen, K. Org. Lett. 2006, 8,
1145–1148.
17) Dötz, F.; Brand, J. D.; Ito, S.; Gherghel, L.; Müllen, K. J. Am.
Chem. Soc. 2000, 122, 7707–7717.
18) Kramer, B.; Averhoff, A.; Waldvogel, S. R. Angew. Chem. Int. Ed.
2002, 41, 2981–2982.
ACKNOWLEDGMENT
9
2
The work was supported by the UGC of HK (project no:
AoE/P-03/08).
(
REFERENCES
(
(
1) (a) Hirsch, A.; Soi, A.; Karfunkel, H. R. Angew. Chem. Int. Ed.
1992, 31, 766–768. (b) King, B. T.; Olmstead, M. M.; Baldridge, K. K.;
Kumar, B.; Balch, A. L.; Gharamaleki, J. A.; Chem. Commun. 2012, 48,
(
9
882–9884. (c) Scott, L. T. Chem. Soc. Rev. 2015, 44, 6464–6471.
(
(
19) Zhai, L.; Shukla, R.; Rathore, R. Org. Lett. 2009, 11, 3474–3477.
20) CCDC-1474467 contains the supplementary crystallographic
(
(
2) (a) Li, Z.; Liu, Z.; Sun, H.; Gao, C.; Chem. Rev. 2015, 115, 7046–7117.
b) Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015,
data for 6.
21) The hat depth is defined as the distance of the central quater-
4
4, 6616–6643. (c) Segawa, Y.; Yagi, A.; Matsui, K.; Itami, K. Angew.
Chem. Int. Ed. 2016, 55, 5136–5158.
3) (a) Yamamoto, K.; Saitho, Y.; Iwaki, D.; Ooka, T. Angew. Chem.
Int. Ed. 1991, 30, 1173–1174. (b) Tsefrikas, V. M.; Scott, L. T. Chem. Rev.
006, 106, 4868–4884. (c) Wu, Y.-T.; Siegel, J. S. Chem. Rev. 2006,
06, 4843–4867. (d) Bharat; Bhola, R.; Bally, T.; Valente, A.; Cyrański,
(
nary carbon atom to the plane defined by the three mid-points of the
C5−C6, C11−C12 and C17−C18 bonds of compound 6.
(
(
22) Brandenburg, J. G.; Grimme, S.; Jones, P. G.; Markopoulos, G.;
Hopf, H.; Cyranski, M. K.; Kuck, D.; Chem. Eur. J. 2013, 19, 9930–
938.
2
1
9
M. K.; Dobrzycki, Ł.; Spain, S. M.; Rempała, P.; Chin, M. R.; King, B.
T. Angew. Chem. Int. Ed. 2010, 49, 399–402 (e) Luo, J.; Xu, X.; Mao,
R.; Miao, Q. J. Am. Chem. Soc. 2012, 134, 13796–13803. (f) Feng, C.-N.;
Kuo, M.-Y.; Wu, Y.-T.; Angew. Chem. Int. Ed. 2013, 52, 7791–7794. (g)
Kawasumi, K.; Zhang, Q.; Segawa, Y.; Scott, L. T.; Itami, K. Nat.
(
(
23) Fujioka, Y. Bull. Chem. Soc. Jpn. 1984, 57, 3494–3506.
24) Markopoulos, G.; Henneicke, L.; Shen, J.; Okamoto, Y.; Jones, P.
G.; Hopf, H. Angew. Chem. Int. Ed. 2012, 51, 12884–12887.
ACS Paragon Plus Environment