E. Banaszak et al. / Tetrahedron Letters 47 (2006) 6235–6238
6237
Shavel, J. J. Heterocycl. Chem. 1972, 9, 175–176; (c)
Dejardin, J.-V.; Lapiere, C.-L. Bull. Soc. Chim. Fr. 1978,
1–2, 75–82; (d) Bohn, B.; Heinrich, N.; Vorbrueggen, H.
Heterocycles 1994, 37, 1731–1746; (e) Zhang, W.; Pugh, G.
Tetrahedron Lett. 2001, 42, 5613–5615; (f) Battistuzzi, G.;
Cacchi, S.; De Salve, I.; Fabrizi, G.; Parisi, L. M. Adv.
Synth. Catal. 2005, 347, 308–312; (g) Villani, F. J.; Mann,
T. A.; Wefer, E. A.; Hannon, J.; Larca, L. L.; Landon, M.
J.; Spivak, W.; Vashi, D. J. Med. Chem. 1975, 18, 1–8; (h)
Passarotti, C.; Bandi, G. L.; Citerio, L.; Valenti, M. Boll.
Chim. Farmaceutico 1991, 130, 312–314.
O
O
RCM
N
N
N
9
10
Isomerization
silica gel
O
RCM
1
88%
Grubb's catalyst B
toluene, 70 °C, 4 h
6. Bridger, G.; Skerlj, R.; Kaller, A.; Hartwig, C.; Bogucki,
D.; Wilson, T. R.; Crawford, J.; McEachern, E. J.; Astma,
B.; Nan, S.; Zhou, Y.; Schols, D.; Smith, C. D.; DiFluri,
R. M. PCT Int. Appl. WO 0222600, 2002.
11
Scheme 4. Isomerization-RCM tandem.
7. (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–
4450; (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D.
Angew. Chem., Int. Ed. 2005, 44, 4490–4527; (c) Grubbs,
R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28,
cross coupling, in 43% yield starting from 2-bromo-3-
hydroxypyridine. Treatment of 9 under various RCM
conditions (temperature, catalyst loading) did not afford
the expected heterocycle 10, in these experiments only
isomerization of 9 to 11 was observed in moderate yield.
Taking into account this result, we performed the total
isomerization of 9 to 11 by a successful treatment on sil-
ica gel. After which, we realized the RCM of 11 (catalyst
B, 10 mol%) to yield 1 in 88%, after 4 h at 70 ꢁC in tol-
uene. Despite this excellent result for RCM, this syn-
thetic sequence via 9 seemed less efficient than the
procedure described in Scheme 3 because it afforded
pyranopyridine 1 only in 38% overall yield starting from
2-bromo-3-hydroxypyridine.
446–452; (d) Furstner, A.; Guth, O.; Rumbo, A.; Seidel,
¨
G. J. Am. Chem. Soc. 1999, 121, 11108–11113; (e)
Stefinovic, M.; Snieckus, V. J. Org. Chem. 1998, 63,
2808–2809; (f) Deiters, A.; Martin, S. F. Chem. Rev. 2004,
104, 2199–2238; (g) Van Otterlo, W. A. L.; Ngidi, E. L.;
Kuzvidza, S.; Morgans, G. L.; Moleele, S. S.; De Koning,
C. B. Tetrahedron 2005, 61, 9996–10006; (h) Van Otterlo,
W. A. L.; Ngidi, E. L.; De Koning, C. B. Tetrahedron Lett.
2003, 44, 6483–6486; (i) Hong Nguyen, V. T.; Bellur, E.;
Langer, P. Tetrahedron Lett. 2006, 47, 113–116; (j)
Furstner, A.; Ackermann, L. Chem. Commun. 1999, 95–
¨
96; (k) Chang, S.; Grubbs, R. H. J. Org. Chem. 1998, 63,
864–866.
8. (a) Felpin, F.-X.; Girard, S.; Vo-Thanh, G.; Robins, R. J.;
´
Villieras, J.; Lebreton, J. J. Org. Chem. 2001, 66, 6305–
In summary, we have succeeded in preparing expected
2H-dihydropyrano[3,2-b]pyridine 1 and 2,3H-dihydro-
oxepino[3,2-b]pyridine 2 in good yields starting from
commercial 2-bromo-3-pyridinol (47% and 44%, respec-
tively) and we have developed new, versatile and effi-
cient syntheses using an RCM reaction with pyridine
units as substrates. The extension of this work to the
preparation of other potential biological scaffolds
including fused heterocyclic moieties is currently under
investigation.
6312; (b) Van Otterlo, W. A. L.; Morgans, G. L.; Khanye,
S. D.; Aderibigbe, B. A. A.; Michael, J. P.; Billing, D. G.
Tetrahedron Lett. 2004, 45, 9171–9175; (c) Branowska, D.;
Rykowski, A. Tetrahedron 2005, 61, 10713–10718.
9. Colandrea, V. J.; Naylor, E. M. Tetrahedron Lett. 2000,
41, 8053–8057.
10. An other way to prepare 6 is described by Knochel: Kopp,
F.; Krasovskiy, A.; Knochel, P. Chem. Commun. 2004,
2288–2289.
11. Preparation of 3-allyloxy-2-vinylpyridine 7.
3-Hydroxy-2-vinylpyridine 69,10 (1.763 g, 14.6 mmol) in
solution in distilled DMF (20 mL) was added to sodium
hydride (0.461 g, 19.2 mmol), at 0 ꢁC, under a nitrogen
atmosphere. After stirring at 0 ꢁC for 1 h, a solution of
allyl bromide (1.7 mL, 19.2 mmol) in DMF (10 mL) was
added dropwise. Then the reaction medium was allowed to
stir at room temperature for 3 h. The resulting solution
was rapidly washed with a saturated aqueous NH4Cl
solution and extracted with dichloromethane (2 · 10 mL).
After drying (MgSO4), filtration and solvent evaporation,
the crude product was purified by column chromato-
graphy on a silica gel (0.063–0.200 mm, eluent: hexane/
AcOEt 70:30), which yielded 3-allyloxy-2-vinylpyridine
7 (1.736 g, 79%) as an orange wax. 1H NMR: dH 4.56 (dd,
J = 3.6, 1.4 Hz, 2H), 5.30 (dd, J = 10.5, 1.3 Hz, 1H), 5.42
(dd, J = 17.2, 2.1 Hz, 1H), 5.47 (dd, J = 10.9, 2.1 Hz, 1H),
6.05 (m, 1H), 6.38 (dd, J = 17.4, 2.1, 1H), 7.15 (m, 3H),
8.18 (dd, J = 4.10, 1.52, 1H); 13C NMR: dC 69.16, 118.07,
118.74, 119.46, 123.16, 130.84, 132.68, 141.40, 145.54,
152.05; MS (EI) m/z 162 ([M+H]+, 8), 161 (M+, 52), 160
([MÀH]+, 63), 146 (45), 120 (100), 92 (86), 79 (28), 65 (60);
IR (NaCl) m 3020, 1578, 1442, 784.
Acknowledgements
We gratefully acknowledge the financial support from
CNRS and UHP. We thank Sandrine Adach for record-
ing low resolution mass spectra.
References and notes
1. Comoy, C.; Banaszak, E.; Fort, Y. Tetrahedron 2006, 62,
6036–6041.
2. (a) Sliwa, H.; Krings, K. P. Heterocycles 1979, 12, 493–
495; (b) Billeret, D.; Blondeau, D.; Sliwa, H. Tetrahedron
Lett. 1991, 32, 627–628; (c) Billeret, D.; Blondeau, D.;
Sliwa, H. Synthesis 1993, 881–884.
3. Bruhn, J.; Zsindely, J.; Schmidt, H. Helv. Chim. Acta
1978, 61, 2542–2559.
4. Evans, J. M.; Stemp, G. Synth. Commun. 1988, 18, 1111–
1118.
12. Preparation of 2H-dihydropyrano[3,2-b]pyridine 1.
Grubb’s second generation catalyst (10 mol %) was added
to a degassed solution of 3-allyloxy-2-vinylpyridine 7
5. For examples, see: (a) Moffet, R. B. J. Org. Chem. 1970,
35, 3596–3600; (b) Von Strandtmann, M.; Connor, D.;