Angewandte Chemie International Edition
10.1002/anie.201805439
COMMUNICATION
However, spectra of
9
, which has {Ti
7
Fe} bound to Cu(II) via the
[4]
5]
E. J. L. McInnes, G. A. Timco, G. F. S. Whitehead, R. E. P. Winpenny,
Angew. Chem. Int. Ed., 2015, 54, 14244-14269.
pyridyl head-group on the thread
B, do show evidence of
[
A. Fernandez, J. Ferrando-Soria, E. M. Pineda, F. Tuna, I. J. Vitorica-
Yrezabal, C. Knappke, J. Ujma, C. A. Muryn, G. A. Timco, P. E. Barran,
A. Ardavan, R. E. P. Winpenny, Nat. Commun. 2016, 7, 10240.
A. Fernandez, E. Moreno Pineda, C. A. Muryn, S. Sproules, F. Moro, G.
A. Timco, E. J. L. McInnes, R. E. P. Winpenny, Angew. Chem. Int. Ed.
2015, 54, 10858-10861.
exchange coupling, with a clear additional splitting compared to
a simple superposition spectrum (Figure 4). Simulation gives an
-
1
exchange interaction of J = -0.03 cm (-2JŝFe.ŝCu exchange
[6]
-
1
Hamiltonian). This is similar to the J = -0.016 cm found by EPR
II
t
[6]
2 7 8 2
for the [Cu(hfac) ]{[B][Cr Ni O (O C Bu)16] analogue and, as
[
7]
M. –E. Boulon, A. Fernandez Mato, E. M. Pineda, N. F. Chilton, G. Timco,
A. J. Fielding, R. E. P. Winpenny, Angew. Chem. Int. Ed. 2017, 56, 3876-
with that system, the mechanism is unclear given the lack of
covalent interaction between the components (the leading
3
879.
J. E. M. Lewis, P. D. Beer, S. J. Loeb, S. M. Goldup, Chem. Soc. Rev.
018, 46, 2577-2591.
-
1
component of the dipolar interactions is of ca. -0.003 cm ).
[8]
9]
2
These results show we can prepare diamagnetic [3]rotaxanes
into which we will, in the future, dope paramagnetic [3]rotaxanes,
seeking to perform two-qubit gates in orientated single crystals.
The preparation of compound 11, where we have included two
distinct heterometallic rings without exchange of metals between
the two rings suggests this approach is promising.
[
G. A. Timco, A. Fernandez, A. K. Kostopoulos, C. A. Muryn, R. G.
Pritchard, I. Strashnov, I. J. Vitorica-Yrezebal, G. F. S. Whitehead, R. E.
P. Winpenny, Angew. Chem. Int. Ed. 2017, 56, 13629-13632.
[10] F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S.
Piligkos, G. Timco, R. E. P. Winpenny, Phys. Rev. Lett. 2005, 94, 207208.
[
11] A. Chiesa, G. F. S. Whitehead, S. Carretta, L. Carthy, G. A. Timco, S. J.
Teat, G. Amoretti, E. Pavarini, R. E. P. Winpenny and P. Santini,
Scientific Rep., 2014, 4, 7423.
[
12] K. Abdulwahab, M. A. Malik, P. O’Brien, K. Govender, C. A. Muryn, G.
A. Timco, F. Tuna, R. E. P. Winpenny, Dalton Trans., 2013, 42, 196–
206.
[
[
[
13] A. Ghirri, J. van Tol, I. Vitorica-Yrezabal, G. A. Timco, R. E. P. Winpenny,
Dalton Trans., 2015, 44, 14027-14033.
14] L. W. Hessel, C. Romers, Recl. Trav. Chim. Pays-Bas. 1969, 88, 545-
552.
15] T. Frot, S. Cochet, G. Laurent, C. Sassoye, M. Popall, C. Sanchez, L.
Rozes, Eur. J. Inorg. Chem. 2010, 5650–5659.
[
16] C. L. Perrin, T. J. Dwyer, Chem. Rev. 1990, 90, 935–967.
17] G. A. Timco, S. Carretta, F. Troiani, F. Tuna, R. G. Pritchard, E. J. L.
McInnes, A. Ghirri, A. Candini, P. Santini, G. Amoretti, M. Affronte, R. E.
P. Winpenny, Nature Nanotech. 2009, 4, 173-178.
[
[
[
[
18] D. Collison, A. K. Powell, Inorg. Chem. 1990, 29, 4735-4746.
19] G. Elbers, S. Remme, G. Lehmann, Inorg. Chem. 1986, 25, 896-897.
20] S. Piligkos, H. Weihe, E. Bill, F. Neese, H. El Mkami, G. M. Smith, D.
Collison, G. Rajaraman, G. A. Timco, R. E. P. Winpenny, E. J. L. McInnes,
Chem. Eur. J. 2009, 15, 3152-3167.
[
21] A. Ardavan, A. M. Bowen, A. Fernandez, A. J. Fielding, D. Kaminski, F.
Moro, C. A. Muryn, M. D. Wise, A. Ruggi, E. J. L. McInnes, K. Severin,
G. A. Timco, C. R. Timmel, F. Tuna, G. F. S. Whitehead, R. E. P.
Winpenny, npj Quantum Information 2015, 1, 15012.
Figure 4. Q-band (34.0463 GHz) EPR spectrum of a powder sample of
9 (top;
black) measured at 5 K. Calculated spectra (red) with: SFe = 5/2, gFe = 2.00, DFe
=
-
1
-
=
0.19, |EFe| = 0.04 cm (E/D = 0.21), SCu = 1/2, gCu(x,y,z) = 2.05,2.05,2.30, and JFeCu
-0.03 cm-1 (middle) and nil (bottom). Calculated spectra with allowed (black)
and forbidden (red) transitions used a 150 G intrinsic linewidth and strain in the
-1
zero-field splitting matrix and J of 0.01 cm .
.
Acknowledgements
This work was supported by the University of Manchester, the
EPSRC(UK, EP/L018470/1) and the EPSRC National EPR
Facility. We also thank EPSRC (UK) for funding an X-ray
diffractometer (grant number EP/K039547/1).
Keywords: rotaxanes, heterospin, qubits, quantum gate,
quantum computing, quantum information processing
[
1]
2]
C.-F. Lee, D. A. Leigh, R. G. Pritchard, D. Schultz, S. J. Teat, G. A. Timco,
R. E. P. Winpenny, Nature, 2009, 458, 314-318.
[
B. Ballesteros, T. B. Faust, C.-F. Lee, D. A. Leigh, C. A. Muryn, R. G.
Pritchard, D. Schultz, S. J. Teat, G. A. Timco, R. E. P. Winpenny, J. Am.
Chem. Soc. 2010, 132, 15435-15444.
[
3]
C.S. Mullins, V. L. Pecoraro, Coord. Chem. Rev. 2008, 252, 416-443.
This article is protected by copyright. All rights reserved.