[
EEQu]NTf2 is composed of two overlapping bands peaked at
Notes and references
3
50 nm (see Fig. S3 in ESI†), in a shape similar to the case in solution.
1
T. Torimoto, T. Tsuda, K. Okazaki and S. Kuwabata, Adv. Mater.,
010, 22, 1196.
However, the molten [EEQu]NTf exhibits structureless emission
2
2
bands, as shown in Fig. 3. Unlike the cases in solution and the solid
state, the emission peak in the liquid state increases with excitation
wavelength, in agreement with the previous studies on imidazolium
2 J. Huang, H. Luo, C. Liang, I. Sun, G. A. Baker and S. Dai, J. Am.
Chem. Soc., 2005, 127, 12784.
3
A. J. Boydston, C. S. Pecinovsky, S. T. Chao and C. W. Bielawski, J.
Am. Chem. Soc., 2007, 129, 14550; A. J. Boydston, P. D. Vu,
O. L. Dykhno, V. Chang, A. R. Wyatt, A. S. Stockett,
E. T. Ritschdorff, J. B. Shear and C. W. Bielawski, J. Am. Chem.
Soc., 2008, 130, 3143.
8
ionic liquids. In detail, the emission peak in Fig. 3 would vary from
453 to 486 nm, when the excitation wavelength was shifted from
365 to 410 nm. The emission wavelength of the molten salt falls
4
5
S. f. Tang, A. Babai and A. V. Mudring, Angew. Chem., Int. Ed., 2008,
7, 7631; A. Tokarev, J. Larionova, Y. Guari, C. Gu ꢁe rin, J. M. L oꢁ pez-
de-Luzuriaga, M. Monge, P. Dieudonn ꢁe and C. Blanc, Dalton Trans.,
2010, 39, 10574.
T. Peppel, M. K o€ ckerling, M. Geppert-Rybczy nꢁ ska, R. V. Ralys,
J. K. Lehmann, S. P. Verevkin and A. Heintz, Angew. Chem., Int.
Ed., 2010, 49, 7116.
within the visible range, and a bright cyan fluorescence could be seen
under irradiation by an ultraviolet cold light source (365 nm). A
plausible explanation for the cyan fluorescence should be the presence
of a large number of associated species (such as ion clusters), which
are energetically different and naturally occurring in ionic liquids via
4
8,16
hydrogen-bonding, p–p stacking and/or electrostatic interactions.
Similar results were also obtained from [MMQu]NTf (see Fig. S3
and S4 in ESI†).
2
In conclusion, with [MMQu]NTf and [EEQu]NTf etc. we
6 K. Binnemans, Chem. Rev., 2005, 105, 4148.
7
V. W.-W. Yam, J. K.-W. Lee, C.-C. Ko and N. Zhu, J. Am. Chem.
Soc., 2009, 131, 912.
A. Paul, P. K. Mandal and A. Samanta, J. Phys. Chem. B, 2005, 109,
2
8
2
9148; A. Paul, P. K. Mandal and A. Samanta, Chem. Phys. Lett.,
2005, 402, 375.
present a new type of quinolizinium ionic liquid featuring an
unbranched cation core. The key structural feature makes the small
bicyclic quinolizinium fluorophore exhibit very strong fluorescence
9
J. Zhang, Q. Zhang, F. Shi, S. Zhang, B. Qiao, L. Liu, Y. Ma and
Y. Deng, Chem. Phys. Lett., 2008, 461, 229.
1
0 M. C. Kroon, W. Buijs, C. J. Peters and G.-J. Witkamp, Thermochim.
Acta, 2007, 465, 40; H. L. Ngo, K. LeCompte, L. Hargens and
A. B. McEwen, Thermochim. Acta, 2000, 357, 97.
(
ꢃ334 nm) with quantum yields up to >99% in solution, which raises
the possibility of designing and fabricating high-efficiency fluorescent
compounds with small molecular weights. The emission properties of
these quinolizinium salts can be dramatically tuned by altering the
phase state, and bright cyan fluorescence (ꢃ465 nm) in the molten
state was observed.
1
1
1
1
1
1 S. A. Lawrence, Amines: Synthesis, Properties and Applications,
Cambridge University Press, 2004, pp. 162-164.
2 H. Ihmels, K. Faulhaber, D. Vedaldi, F. Dall’Acqua and G. Viola,
Photochem. Photobiol., 2005, 81, 1107.
3 F. Delgado, M. L. Linares, R. Alajar ꢁı n, J. J. Vaquero and J. A. Builla,
Org. Lett., 2003, 5, 4057.
4 L. J. Rothberg and Z. Bao, J. Phys.: Condens. Matter, 2002, 14,
12261.
5 W. R. Dawson and M. W. Windsor, J. Phys. Chem., 1968, 72, 3251.
Acknowledgements
This work was supported by the National Natural Science Foun-
dation of China (No. 20533080, 21002107).
16 A. Kokorin, Ionic Liquids: Theory Properties New Approaches,
InTech, 2011, pp. 427–482.
8
982 | J. Mater. Chem., 2011, 21, 8979–8982
This journal is ª The Royal Society of Chemistry 2011