10.1002/anie.202012243
Angewandte Chemie International Edition
RESEARCH ARTICLE
[3]
[4]
a) P. Hudgson, D. Weightman, Br. Med. J. 1971, 4, 15-17; b) N. G.
Bowery, D. R. Hill, A. L. Hudson, A. Doble, D. N. Middlemiss, J. Shaw,
M. Turnbull, Nature 1980, 283, 92-94.
The synthesis of (R)-2a was performed by using whole E.coli
cells overexpressing variant E8. To investigate the substrate
inhibition, various concentrations of 1a from 100 mM to 500 mM
were examined. A complete conversion of 400 mM 1a was
achieved with 99% ee (SI Figure S6). The synthesis of (R)-2a was
performed at 40 mL scale with substrate loading of 400 mM (60
g·L-1). The time course showed that the conversion reached 99%
within 24 h and only 0.9% by-product 5a was detected (SI Figure
S7). After simple centrifugation and extraction, the desired
product (R)-2a was isolated as yellow oil in >99% ee and 97%
yield.
a) A. Man, T. Boulanger, B. Brandau, F. Durant, G. Evrard, M. Heaulme,
E. Desaulles, C.-G. Wermutht, J. Med. Chem. 1991, 34, 1307-1313; b)
R. Lal, J. Sukbuntherng, E. H. L. Tai, S. Upadhyay, F. Yao, M. S. Warren,
W. Luo, L. Bu, S. Nguyen, J. Zamora, G. Peng, T. Dias, Y. Bao, M.
Ludwikow, T. Phan, R. A. Scheuerman, M. G. Hui Yan, Q. Q. Wu, T.
Annamalai, S. P. Raillard, K. Koller, M. A. Gallop, K. C. Cundy, J.
Pharmacol. Exp. Ther. 2009, 330, 911-921.
[5]
[6]
G.-S. Lee, N. Subramanian, A. I. Kim, I. Aksentijevich, R. Goldbach-
Mansky, D. B. Sacks, R. N. Germain, D. L. Kastner, J. J. Chae, Nature
2012, 492, 123-127.
a) C. A. 5, S. H. Y. Dumond, J. T. P. Kelleher, L. Tully, Org. Process Res.
Dev. 2008, 12, 392-398; b) J.-H. Jung, D.-H. Yoon, P. Kang, W. K. Lee,
H. Euma, H.-J. Ha, Org. Biomol. Chem. 2013, 11, 3635-3641; c) R.
Zheng, T. Wang, D. Fu, A. Li, X. Li, Y. Zheng, Appl. Microbiol. Biotechnol.
2013, 97, 4839-4847.
Conclusion
The nitrilase SsNIT was engineered for inverted
stereoselectivity from S to R toward 3-substituted glutaronitriles
by directed evolution. A “mirror-image” strategy was performed to
identify key residues responsible for stereo-recognition in the
substrate binding pocket, and a simple switch of the two key
residues resulted in variant with inverted stereopreference (47%
ee, R). Further reshaping the substrate-binding cavity by site-
saturation mutagenesis and combinatorial mutagenesis led to
variant E8 with high catalytic efficiency and stereoselectivity (99%
ee, R). MD simulations showed that the mutations changed the
probabilities of catalytically active conformations leading to (S)- or
(R)-enantiomer. This is in agreement with the experimental
observations. This study provides valuable information for our
understanding on how nitrilase controls the enantioselectivity for
the desymmetric hydrolysis of various prochiral dinitriles, and the
“mirror-image” strategy may be applicable to other nitrilases and
other enzymes for selective desymmetric reactions of prochiral
substrates with two identical active functional groups, that are
currently tested in our continuing pursue.
[7]
[8]
[9]
a) L. Zhang, D. Wang, L. Zhao, M. Wang, J. Org. Chem. 2012, 77, 5584-
5591; b) M. Nojiri, K. Uekita, M. Ohnuki, N. Taoka, Y. Yasohara, J. Appl.
Microbiol. 2013, 115, 1127-1133.
a) Y. Duan, P. Yao, J. Ren, C. Han, Q. Li, J. Yuan, J. Feng, Q. Wu, D.
Zhu, Sci. China. Chem. 2014, 57, 1164-1171; b) M. Wang, Acc. Chem.
Res. 2015, 48, 602-611.
L. Biewenga, T. Saravanan, A. Kunzendorf, J. Y. van der Meer, T. Pijning,
P. G. Tepper, R. van Merkerk, S. J. Charnock, A. W. H. Thunnissen, G.
J. Poelarends, ACS Catal. 2019, 9, 1503-1513.
[10] M. S. Hoekstra, D. M. Sobieray, M. A. Schwindt, T. A. Mulhern, T. M.
Grote, B. K. Huckabee, V. S. Hendrickson, L. C. Franklin, E. J. Granger,
G. L. Karrick, Org. Process Res. Dev. 1997, 1, 26-38.
[11] H. Kakeya, N. Sakai, A. Sano, M. Yokoyama, H. T. Sugai, H. Ohta, Chem.
Lett. 1991, 20, 1823-1824.
[12] M. Wang, C. Liu, J. Li, O. Meth-Cohn, Tetrahedron Lett. 2000, 41, 8549-
8552.
[13] M. Wang, C. Liu, J. Li, Tetrahedron: Asymmetry 2001, 12, 3367-3373.
[14] a) G. DeSantis, Z. Zhu, W. A. Greenberg, K. Wong, J. Chaplin, S. R.
Hanson, B. Farwell, L. W. Nicholson, C. L. Rand, D. P. Weiner, D. E.
Robertson, M. J. Burk, J. Am. Chem. Soc. 2002, 124, 9024-9025; b) D.
E. Robertson, J. A. Chaplin, G. DeSantis, M. Podar, M. Madden, E. Chi,
T. Richardson, A. Milan, M. Miller, D. P. Weiner, K. Wong, J. McQuaid,
B. Farwell, L. A. Preston, X. Q. Tan, M. A. Snead, M. Keller, E. Mathur,
P. L. Kretz, M. J. Burk, J. M. Short, Appl. Environ. Microbiol. 2004, 70,
2429-2436.
Acknowledgements
[15] G. DeSantis, K. Wong, B. Farwell, K. Chatman, Z. Zhu, G. Tomlinson, H.
Huang, X. Tan, L. Bibbs, P. Chen, K. Kretz, M. J. Burk, J. Am. Chem.
Soc. 2003, 125, 11476-11477.
The work was financially supported by the National Natural
Science Foundation of China (Grant No. 21572261), the Youth
Innovation Promotion Association of the Chinese Academy of
Sciences (Grant No. 2016166), Tianjin Synthetic Biotechnology
Innovation Capacity Improvement Project (TSBICIP-KJGG-001)
and National Key Research and Development Plan Special
Project for “Synthetic biology” (2018YFA0901402).
[16] S. Yu, P. Yao, J. Li, J. Feng, Q. Wu, D. Zhu, Catal. Sci. Technol. 2019,
9, 1504-1510.
[17] For changing the entrance tunnel, see: a) A. Shehzad, S. Panneerselvam,
M. Linow, M. Bocola, D. Roccatano, J. Mueller-Dieckmann, M. Wilmanns,
U. Schwaneberg, Chem. Commun. 2013, 49, 4694-4696; b) H. Ma, X.
Yang, Z. Lu, N. Liu, Y. Chen, PLoS One 2014, 9, e103792; c) J. Zhou, Y.
Wang, G. Xu, L. Wu, R. Han, U. Schwaneberg, Y. Rao, Y. L. Zhao, J.
Zhou, Y. Ni, J. Am. Chem. Soc. 2018, 140, 12645-12654; For changing
substrate binding site, see: d) Y. Ensari, G. V. Dhoke, M. D. Davari, M.
Bocola, A. J. Ruff, U. Schwaneberg, Chem. Eur. J. 2017, 23, 12636-
12645; e) L. Skalden, C. Peters, J. Dickerhoff, A. Nobili, H. J. Joosten, K.
Weisz, M. Hohne, U. T. Bornscheuer, ChemBioChem 2015, 16, 1041-
1045; f) X. Chen, H. Zhang, M. A. Maria-Solano, W. Liu, J. Li, J. Feng,
X. Liu, S. Osuna, R.-T. Guo, Q. Wu, D. Zhu, Y. Ma, Nature Nat. Catal.
2019, 2, 931; g) D. Zhang, X. Chen, J. Chi, J. Feng, Q. Wu, D. Zhu, ACS
Catal. 2015, 5, 2452-2457; h) D. Zhu, Y. Yang, S. Majkowicz, T. H.-Y.
Pan, K. Kantardjieff, L. Hua, Org. Lett. 2008, 10, 525-528; i) E. Eger, A.
Simon, M. Sharma, S. Yang, W. B. Breukelaar, G. Grogan, K. N. Houk,
W. Kroutil, J. Am. Chem. Soc. 2020, 142, 792-800; j) F. Qin, B. Qin, W.
Zhang, Y. Liu, X. Su, T. Zhu, J. Ouyang, J. Guo, Y. Li, F. Zhang, J. Tang,
X. Jia, S. You, ACS Catal. 2018, 8, 6012-6020; k) P. Yao, P. Cong, R.
Gong, J. Li, G. Li, J. Ren, J. Feng, J. Lin, P. C. K. Lau, Q. Wu, D. Zhu,
ACS Catal. 2018, 8, 1648-1652; l) X. Ren, N. Liu, A. L. Chandgude, R.
Keywords: directed evolution • desymmetric hydrolysis •
nitrilase • stereopreference inversion • mirror-image
[1]
a) R. B. Silverman, R. Andruszkiewicz, S. M. Nanavati, C. P. Taylor, M.
G. Vartanian, J. Med. Chem. 1991, 34, 2295-2298; b) J. Farrera-Sinfreu,
E. Giralt, S. Castel, F. Albericio, M. Royo, J. Am. Chem. Soc. 2005, 127,
9459-9468; c) M. Ordóñez, C. Cativiela, Tetrahedron-Asymmetry 2007,
18, 3-99; d) M. Ordóñez, C. Cativiela, I. Romero-Estudillo, Tetrahedron:
Asymmetry 2016, 27, 999-1055; e) P. Ramesh, D. Suman, K. S. N.
Reddy, Synthesis 2018, 50, 211-226; ; f) S. Wu, R. Snajdrova, J. C.
Moore, K. Baldenius, U. T. Bornscheuer, Angew. Chem. Int. Ed. 2020,
59,
10.1002/anie.202006648;
Angew.
Chem.
2020,
10.1002/ange.202006648; g) B. Hauer, ACS Catal. 2020, 10, 8418-8427.
a) J. E. Frampton, CNS Drugs 2014, 28, 835-854; b) R. Patel, A. H.
Dickenson, Pharmacol. Research Perspect. 2016, 4, e00205.
[2]
5
This article is protected by copyright. All rights reserved.