1952 Bull. Chem. Soc. Jpn., 78, No. 11 (2005)
Redox Chemistry of 20-Deoxyadenosine Monophosphate
8
L. Young, B. H. Young, K. Younhee, M. R. Hyune, and
several dimers/trimers. Thus, the present studies on the oxida-
tive mechanism of 20-dAMP help us to understand the nature
of the intermediates and the products that can possibly form
during metabolic activities in human physiology, their toxic
behavior and interaction with proteins.
J. Guhung, Biochem. Biophys. Res. Commun., 233, 401 (1997).
A. S. Ray, J. E. Vela, L. Olson, and A. Fridland, Biochem.
Pharmacol., 68, 1825 (2004).
9
10 J. W. Taanman, J. R. Muddle, and A. C. Muntau, Hum.
Mol. Genet., 12, 1839 (2003).
11 H. K. Miller and M. E. Balis, Arch. Biochem. Biophys.,
126, 221 (1968).
12 H. Erhard, L. H. Winston, B. P. Mark, and P. Steve, J. Mol.
Biol., 269, 570 (1997).
13 J. Krzeminiski, D. Desai, J. M. Lin, V. Serebryany, K.
El-Bayoumy, and S. Amin, Chem. Res. Toxicol., 13, 1143 (2000).
14 J. Bierau, R. Leen, A. H. van Gennip, H. N. Caron, and A.
B. P. van Kuilenburg, J. Chromatogr., 805, 339 (2004).
15 I. L. Nantes, F. M. Correia, A. Faljoni-Alario, A. E.
Kawanami, H. M. Ishiki, A. T. do Amaral, and A. M. Carmona-
Ribeiro, Arch. Biochem. Biophys., 416, 25 (2003).
16 H. Kamiya and H. Kesari, J. Biol. Chem., 270, 19446
(1995).
17 Y. Li, Z. Han, S. Jiang, Y. Jiang, S. Yao, and D. Zhu, Acta
Pharmacol. Sinica, 21, 1125 (2000).
18 G. D. Christian and W. C. Purdy, J. Electroanal. Chem., 3,
363 (1982).
19 F. J. Miller and H. E. Zittel, Anal. Chem., 35, 1866 (1963).
20 T. R. Chen and G. Dryhurst, J. Electroanal. Chem., 177,
149 (1984).
21 R. H. Wopschall and I. Shain, Anal. Chem., 39, 1514
(1967).
Conclusion
The electrooxidative mechanistic pathway of 20-deoxyade-
nosine 50-monophosphate was also compared with its parent
compound, 20-deoxyadenosine. In acidic media, 20-dAMP
upon electrooxidation led to the formation of –O–O– dimer,
alloxan, urea deoxyribose, and –C–O–N– trimer, different
from the products obtained on 20-deoxyadenosine oxidation.
It is interesting to observe that –O–O– dimer obtained in the
case of 20-dAMP electrooxidation lost both the moieties of de-
oxyribose phosphate during silylation, in contrast to the reten-
tion of both deoxyribose moieties in the case of the –O–O–
dimer of 20-deoxyadenosine. This can be accounted for due
to the presence of bulky deoxyribose phosphate units, com-
pared to simple deoxyribose. The electrooxidation of 20-dAMP
at neutral pH leads to the formation of the –O–O– dimer, –C–
O–N–, –C–N–C–, and –C–(N–C)–C– trimers. The hexasilylat-
ed trimer (XXXII) formed in the present studies was similar to
that obtained in the case of 20-deoxyadenosine. This happened
because of the hydrolysis of phosphate moieties during the
silylation process. Thus, the suggested oxidative pathways
help us to understand the mechanism of electron-transfer reac-
tions in the biological system.
22 R. N. Goyal and A. Sangal, J. Electroanal. Chem., 521, 72
(2002).
23 J. J. Lingane, ‘‘Electroanalytical Chemistry,’’ 2nd ed,
Wiley, New York (1966), p. 222.
24 R. N. Goyal, A. Kumar, and A. Mittal, J. Chem. Soc.,
Perkin Trans. 2, 1991, 1369.
25 R. N. Goyal and A. Sangal, J. Electroanal. Chem., 557,
147 (2003).
A. Dhawan is thankful to the University Grant Commission,
New Delhi for the award of Junior Research Fellowship and
financial assistance for the work was provided vide grant
No. 6405-13-414.
26 P. Suramanian and G. Dryhurst, J. Electroanal. Chem.,
224, 137 (1987).
References
1
G. Dryhurst, ‘‘Electrochemistry of Biological Molecules,’’
Academic Press, New York (1977), p. 74.
Y. Marushige, A. S. Hepner, and M. Smith, Can. J. Bio-
chem., 8, 5197 (1969).
27 A. A. Rostami and G. Dryhurst, J. Electroanal. Chem.,
223, 143 (1987).
28 R. N. Goyal and N. K. Singhal, Indian J. Chem. Sect. A, 38,
49 (1999).
2
3 R. A. McGregor and S. A. Gravina, U.S. Patent
86534620010525 (2001); Chem. Abstr., 137, 353261 (2002).
29 H. A. Marsh and G. Dryhurst, J. Electroanal. Chem., 95,
81 (1979).
4
R. A. McGregor and H. D. Homan, PCT Int. Appl.,
US648520030303 (2003); Chem. Abstr., 139, 250023 (2003).
R. A. McGregor, H. D. Homan, and S. A. Gravina, PCT
Int. Appl., US27111 (2003); Chem. Abstr., 140, 259084 (2004).
U. Chmielowiec, H. Kruszewska, and J. Cybulski,
Farmaco, 54, 611 (1999).
30 R. N. Goyal, A. B. Toth, and G. Dryhurst, J. Electroanal.
Chem., 239, 1612 (1988).
31 G. Dryhurst, J. Electrochem. Soc., 119, 1659 (1972).
32 J. Wang, X. Cai, J. Y. Wang, C. Jonsson, and E. Paleck,
Anal. Chem., 67, 4065 (1995).
33 R. N. Goyal, N. Jain, and D. K. Garg, Bioelectrochem.
Bioenerg., 43, 105 (1997).
34 J. N. Duker, J. Sperling, J. K. Soprano, P. D. Druin, A.
Davis, and R. Ashworth, J. Cell. Biochem., 81, 393 (2001).
5
6
7 J. L. Vaerman, P. Moureau, F. Deldime, P. Lewalle, C.
Lammineur, F. Morschhauser, and P. Martiat, Blood, 90, 331
(1997).