DNA Chlorination by HOCl and N-Chloramines
Chem. Res. Toxicol., Vol. 23, No. 7, 2010 1301
(
(
8) Yap, Y. W., Whiteman, M., and Cheung, N. S. (2007) Chlorinative
stress: An under appreciated mediator of neurodegeneration? Cell.
Signalling 19, 219–228.
oxidase generates 5-chlorouracil in human atherosclerotic tissue: a
potential pathway for somatic mutagenesis by macrophages. J. Biol.
Chem. 281, 3096–3104.
9) Weitzman, S. A., and Gordon, L. I. (1990) Inflammation and cancer: role
(33) Asahi, T., Kondo, H., Masuda, M., Nishino, H., Aratani, Y., Naito,
Y., Yoshikawa, T., Hisaka, S., Kato, Y., and Osawa, T. (2010)
Chemical and immunochemical detection of 8-halogenated deoxygua-
nosines at early stage inflammation. J. Biol. Chem. 285, 9282–9291.
(34) Test, S. T., Lampert, M. B., Ossanna, P. J., Thoene, J. G., and Weiss,
S. J. (1984) Generation of nitrogen-chlorine oxidants by human
phagocytes. J. Clin. InVest. 74, 1341–1349.
(35) Thomas, E. L. (1979) Myeloperoxidase, hydrogen peroxide, chloride
antimicrobial system: nitrogen-chlorine derivatives of bacterial com-
ponents in bactericidal action against Escherichia coli. Infect. Immun.
23, 522–531.
of phagocyte-generated oxidants in carcinogenesis. Blood 76, 655–663.
(
(
(
10) Malle, E., Buch, T., and Grone, H. J. (2003) Myeloperoxidase in kidney
disease. Kidney Int. 64, 1956–1967.
11) Nicholls, S. J., and Hazen, S. L. (2005) Myeloperoxidase and cardiovas-
cular disease. Arterioscler. Thromb. Vasc. Biol. 25, 1102–1111.
12) Hawkins, C. L., Pattison, D. I., and Davies, M. J. (2003) Hypochlorite-
induced oxidation of amino acids, peptides and proteins. Amino Acids
2
5, 259–274.
(
13) Hawkins, C. L., Pattison, D. I., Whiteman, M. Davies, M. J. (2006)
Chlorination and Nitration of DNA and Nucleic Acid Components,
in OxidatiVe Damage to Nucleic Acids (Evans, M. D., and Cooke,
M. S., Eds.) Landes Bioscience and Springer Science, Austin, TX.
14) Pattison, D. I., and Davies, M. J. (2001) Absolute rate constants for
the reaction of hypochlorous acid with protein side chains and peptide
bonds. Chem. Res. Toxicol. 14, 1453–1464.
15) Hawkins, C. L., and Davies, M. J. (2005) Inactivation of protease
inhibitors and lysozyme by hypochlorous acid: role of side-chain
oxidation and protein unfolding in loss of biological function. Chem.
Res. Toxicol. 18, 1600–1610.
(36) Weiss, S. J., Klein, R., Slivka, A., and Wei, M. (1982) Chlorination
of taurine by human neutrophils. Evidence for hypochlorous acid
generation. J. Clin. InVest. 70, 598–607.
(
(
(
37) Morris, J. C. (1966) The acid ionization constant of HOCl from 5 to
5 °C. J. Phys. Chem. 70, 3798–3805.
38) Summers, F. A., Morgan, P. E., Davies, M. J., and Hawkins, C. L.
2008) Identification of plasma proteins that are susceptible to thiol
3
(
(
oxidation by hypochlorous acid and N-chloramines. Chem. Res.
Toxicol. 21, 1832–1840.
(
16) Hazell, L. J., Davies, M. J., and Stocker, R. (1999) Secondary radicals
derived from chloramines of apolipoprotein B-100 contribute to HOCl-
induced lipid peroxidation of low-density lipoproteins. Biochem. J.
(
39) Hawkins, C. L., and Davies, M. J. (1998) Reaction of HOCl with
amino acids and peptides: EPR evidence for rapid rearrangement and
fragmentation reactions of nitrogen-centered radicals. J. Chem. Soc.
Perkin Trans. 2 9, 1937–1945.
3
39, 489–495.
(
17) Hawkins, C. L., Pattison, D. I., and Davies, M. J. (2002) Reaction of
protein chloramines with DNA and nucleosides: evidence for the
formation of radicals, protein-DNA cross-links and DNA fragmenta-
tion. Biochem. J. 365, 605–615.
18) Prutz, W. A. (1996) Hypochlorous acid interactions with thiols,
nucleotides, DNA, and other biological substrates. Arch. Biochem.
Biophys. 332, 110–120.
19) Hawkins, C. L., and Davies, M. J. (2001) Hypochlorite-induced damage
to nucleosides: formation of chloramines and nitrogen-centered
radicals. Chem. Res. Toxicol. 14, 1071–1081.
20) Masuda, M., Suzuki, T., Friesen, M. D., Ravanat, J. L., Cadet, J.,
Pignatelli, B., Nishino, H., and Ohshima, H. (2001) Chlorination of
guanosine and other nucleosides by hypochlorous acid and myelop-
eroxidase of activated human neutrophils. Catalysis by nicotine and
trimethylamine. J. Biol. Chem. 276, 40486–40496.
(
(
(
(
(
(
40) Thomas, E. L., Grisham, M. B., and Jefferson, M. M. (1986)
Preparation and characterization of chloramines. Methods Enzymol.
1
32, 569–585.
41) Morin, B., Davies, M. J., and Dean, R. T. (1998) The protein oxidation
product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA
damage. Biochem. J. 330, 1059–1067.
42) Hawkins, C. L., Brown, B. E., and Davies, M. J. (2001) Hypochlorite-
and hypobromite-mediated radical formation and its role in cell lysis.
Arch. Biochem. Biophys. 395, 137–145.
43) Richards, D. M., Dean, R. T., and Jessup, W. (1988) Membrane
proteins are critical targets in free radical mediated cytolysis. Biochim.
Biophys. Acta 946, 281–288.
(
(
(
44) Suzuki, T., and Ohshima, H. (2003) Modification by fluoride, bromide,
iodide, thiocyanate and nitrite anions of reaction of a myeloperoxidase-
-
2
H O
2
-Cl system with nucleosides. Chem. Pharm. Bull. 51, 301–304.
(
(
(
(
21) Henderson, J. P., Byun, J., and Heinecke, J. W. (1999) Chlorination
of nucleobases, RNA and DNA by myeloperoxidase: a pathway for
cytotoxicity and mutagenesis by activated phagocytes. Redox Rep. 4,
45) Chen, H. J., Row, S. W., and Hong, C. L. (2002) Detection and
quantification of 5-chlorocytosine in DNA by stable isotope dilution
and gas chromatography/negative ion chemical ionization/mass spec-
trometry. Chem. Res. Toxicol. 15, 262–268.
3
19–320.
22) Spencer, J. P., Whiteman, M., Jenner, A., and Halliwell, B. (2000)
Nitrite-induced deamination and hypochlorite-induced oxidation of
DNA in intact human respiratory tract epithelial cells. Free Radical
Biol. Med. 28, 1039–1050.
23) Whiteman, M., Hong, H. S., Jenner, A., and Halliwell, B. (2002) Loss
of oxidized and chlorinated bases in DNA treated with reactive oxygen
species: implications for assessment of oxidative damage in vivo.
Biochem. Biophys. Res. Commun. 296, 883–889.
24) Hayatsu, H., Pan, S., and Ukita, T. (1971) Reaction of sodium
hypochlorite with nucleic acids and their constituents. Chem. Pharm.
Bull. 19, 2189–2192.
25) Gould, J. P., Richards, J. T., and Miles, M. G. (1984) The kinetics
and primary products of uracil chlorination. Water Res. 18, 205–212.
26) Whiteman, M., Jenner, A., and Halliwell, B. (1999) 8-Chloroadenine:
a novel product formed from hypochlorous acid-induced damage to
calf thymus DNA. Biomarkers 4, 303–310.
27) Badouard, C., Masuda, M., Nishino, H., Cadet, J., Favier, A., and
Ravanat, J. L. (2005) Detection of chlorinated DNA and RNA
nucleosides by HPLC coupled to tandem mass spectrometry as
potential biomarkers of inflammation. J. Chromatogr., B 827, 26–31.
28) Henderson, J. P., Byun, J., and Heinecke, J. W. (1999) Molecular
chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride
system of phagocytes produces 5-chlorocytosine in bacterial RNA.
J. Biol. Chem. 274, 33440–33448.
29) Gould, J. P., Richards, J. T., and Miles, M. G. (1984) The formation
of stable organic chloramines during the aqueous chlorination of
cytosine and 5-methylcytosine. Water Res. 18, 991–999.
30) Henderson, J. P., Byun, J., Takeshita, J., and Heinecke, J. W. (2003)
Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic
products of myeloperoxidase, in human inflammatory tissue. J. Biol.
Chem. 278, 23522–23528.
(
(
46) Suzuki, T., Masuda, M., Friesen, M. D., Fenet, B., and Ohshima, H.
(
2002) Novel products generated from 2′-deoxyguanosine by hy-
-
2 2
pochlorous acid or a myeloperoxidase-H O -Cl system: identification
of diimino-imidazole and amino-imidazolone nucleosides. Nucleic
Acids Res. 30, 2555–2564.
47) Suzuki, T., Masuda, M., Friesen, M. D., and Ohshima, H. (2001)
Formation of spiroiminodihydantoin nucleoside by reaction of 8-oxo-
7
,8-dihydro-2′-deoxyguanosine with hypochlorous acid or a myelop-
-
2 2
eroxidase-H O -Cl system. Chem. Res. Toxicol. 14, 1163–1169.
(
(
(
(
48) Hofer, T., Badouard, C., Bajak, E., Ravanat, J. L., Mattsson, A., and
Cotgreave, I. A. (2005) Hydrogen peroxide causes greater oxidation
in cellular RNA than in DNA. Biol. Chem. 386, 333–337.
49) Pattison, D. I., and Davies, M. J. (2005) Kinetic analysis of the role
of histidine chloramines in hypochlorous acid mediated protein
oxidation. Biochemistry 44, 7378–7387.
(
(
50) Pattison, D. I., Hawkins, C. L., and Davies, M. J. (2007) Hypochlorous
acid-mediated protein oxidation: how important are chloramine transfer
reactions and protein tertiary structure? Biochemistry 46, 9853–9864.
51) Peskin, A. V., and Winterbourn, C. C. (2003) Histamine chloramine
reactivity with thiol compounds, ascorbate and methionine and with
intracellular glutathione. Free Radical Biol. Med. 35, 1252–1260.
(52) Barrette, W. C., Jr., Hannum, D. M., Wheeler, W. D., and Hurst, J. K.
(1989) General mechanism for the bacterial toxicity of hypochlorous
acid: abolition of ATP production. Biochemistry 28, 9172–9178.
(53) Thomas, E. L., Grisham, M. B., Melton, D. F., and Jefferson, M. M.
(1985) Evidence for a role of taurine in the in vitro oxidative toxicity
of neutrophils toward erythrocytes. J. Biol. Chem. 260, 3321–3329.
(54) Santos, O., Perez, L. M., Briggle, T. V., Boothman, D. A., and Greer,
S. B. (1990) Radiation, pool size and incorporation studies in mice
with 5-chloro-2′-deoxycytidine. Int. J. Radiat. Oncol. Biol. Phys. 19,
357–365.
(
(
(
(
(
(
31) Jiang, Q., Blount, B. C., and Ames, B. N. (2003) 5-Chlorouracil, a
marker of DNA damage from hypochlorous acid during inflammation.
A gas chromatography-mass spectrometry assay. J. Biol. Chem. 278,
(55) Pal, B. C., Cumming, R. B., Walton, M. F., and Preston, R. J. (1981)
Environmental pollutant 5-chlorouracil is incorporated in mouse liver
and testes DNA. Mutat. Res. 91, 395–401.
3
2834–32840.
32) Takeshita, J., Byun, J., Nhan, T. Q., Pritchard, D. K., Pennathur, S.,
(56) Morris, S. M. (1993) The genetic toxicology of 5-fluoropyrimidines
Schwartz, S. M., Chait, A., and Heinecke, J. W. (2006) Myeloper-
and 5-chlorouracil. Mutat. Res. 297, 39–51.