C O MMU N I C A T I O N S
The significant difference between compounds 3 and 6 concern-
ing cross-linking properties probably involves two factors. First,
the formation of cross-link by 3 requires two steps, whereas cross-
link by 6 is probably by formation of a bisquinone methide
intermediate18 or by nonspontaneous quinone methide formation.
Second, on comparison with planar 3, compound 6, like many
DNA-specific binders,16 apparently has good shape orientation to
adopt a helical conformation (twist ≈ 35°). Therefore, compound
6 might naturally exhibit the strongest DNA binding and cross-
linking abilities upon photoactivation.
In summary, we prepared a potent, water-soluble and photoin-
ducible DNA cross-linking agent. This finding will encourage us
to modify its structure for multiple applications in biological and
medicinal chemistry. Further tethering to DNA binding agents for
potential drug applications is currently under investigation.
Figure 3. Concentration dependence of 6 for DNA cross-linking. Lane 1,
.5 µg lambda DNA/HindIII (molecular weight standard); lane 2, 0.7 µg
pBR322 (control); lane 3, 0.7 µg pBR322 + 50 µM 6 ; lane 4, 0.7 µg
pBR322 + hν (30 min); lane 5, 0.7 µg pBR322 + 0.1 µM 6 + hν (30
min); lane 6, 0.7 µg pBR322 + 1 µM 6 + hν (30min); lane 7, 0.7 µg
pBR322 + 10 µM 6 + hν (30 min).
1
17
Acknowledgment. This research was supported in part by the
National Science of Foundation of China (NSFC, No.20142001,
20272046). We thank Professors Dr. Dehua Pei in the Department
of Chemistry of The Ohio State University and Dr. Kin Shing Chan
in the Department of Chemistry of The Chinese University of Hong
Kong for their critical reading of our manuscript and we thank three
reviewers for their critical comments.
Figure 4. Concentration dependence of 3 for DNA cross-linking. Lane 1,
1
.5 µg lambda DNA/HindIII (molecular weight standard); lane 2, 0.7 µg
pBR322 (control); lane 3, 0.7 µg pBR322 + 1000 µM 3; lane 4, 0.7 µg
pBR322 + hν (30 min); lane 5, 0.7 µg pBR322 + 10 µM 3 + hν (30 min);
lane 6, 0.7 µg pBR322 + 100 µM 3 + hν (30 min); lane 7, 0.7 µg pBR322
+
500 µM 3 + hν (30 min); lane 8, 0.7 µg pBR322 + 1000 µM 3 + hν
(
30 min).
Supporting Information Available: Synthesis and characterization
of 3 and 6, DNA experimental data and detailed calculation for 6 (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(
1) (a) Kohn, K. W. In Topics in Molecular and Structural Biology 3.
Molecular Aspects of Anti-cancer Drug Action; Neidle, S., Waring, M.,
Eds.; Verlag Chemie Gmbh: D-6940, Weinheim, 1994; p 315. (b) Rajski,
S. R.; Williams, R. M. Chem. ReV. 1998, 98, 2723. (c) Wolkenberg, S.
E.; Boger, D. L. Chem. ReV. 2002, 102, 2477.
Figure 5. pH dependence of DNA cross-link by compound 6. Lane 1, 1.5
µg lambda DNA/HindIII (molecular weight standard); lane 2, 0.7 µg
pBR322 (control); lane 3, 0.7 µg pBR322 + 10 µM 6 (pH ) 5.0); lane 4,
0
6
7
8
.7 µg pBR322 + hν (30 min, pH ) 5.0); lane 5, 0.7 µg pBR322 + 10 µM
(pH ) 5.0) + hν (30 min); lane 6, 0.7 µg pBR322 + 10 µM 6 (pH )
.7) + hν (30 min); lane 7, 0.7 µg pBR322 + 10 µM 6 (pH ) 10.0); lane
, 0.7 µg pBR322 + hν (30 min, pH ) 10.0); lane 9, 0.7 µg pBR322 + 10
(
2) (a) Cimino, G. D.; Gamper, H. B.; Isaacs, S. T.; Hearst, T. E. Annu. ReV.
Biochem. 1985, 54, 1151. (b) Sherman, S. E.; Lippard, S. J. Chem. ReV.
1
987, 87, 1153. (c) Li, V.-S.; Choi, D.; Tang, M.-S.; Kohn, H. J. Am.
Chem. Soc. 1996, 118, 3765.
µM 6 (pH ) 10.0) + hν (30 min).
(3) (a) Bose, D. S.; Thompson, A. S.; Ching, J.; Hartley, J. A.; Berardine, M.
D.; Jenkins, T. C.; Neidle, S.; Hurley, L. H.; Thurston, D. E. J. Am. Chem.
Soc. 1992, 114, 4939. (b) Hartley, J. A.; Hazrati, A.; Hodgkinson, T. J.;
Kelland, L. R.; Khanim, R.; Shipman, M.; Suzenet, F. Chem. Commun.
of sequential formation of two o-quinone methide intermediates13
2000, 2325. (c) Na, Y.; Li, V.-S.; Nakanishi, Y.; Bastow, K. F.; Kohn,
after photoactivation. When time-courses of cross-link formation
by compounds 3 and 6 at the same concentration (10 µM) were
performed (Figures 6 and 8, see Supporting Information), compound
H. J. Med. Chem. 2001, 44, 3453. (d) Nagatsugi, F.; Tokuda, N.; Maeda,
M.; Sasaki, S. Bioorg. Med. Chem. Lett. 2001, 11, 2577.
4) (a) Iyer, V. N.; Szybalski, W. Science 1964, 145, 55. (b) Moore, H. W.;
Czerniak, R. Med. Res. ReV. 1981, 1, 249.
(
6
was obviously found to be very sensitive to time increase, whereas
(5) (a) Peter, M. G. Angew. Chem., Int. Ed. Engl. 1989, 28, 555. (b) Gaikwad,
N. W.; Bodell, W. J. Chem.-Biol. Interact. 2001, 138, 217. (c) Amouri,
H.; Le Bras, A. J. Acc. Chem. Res. 2002, 35, 501.
compound 3 was inert. When the concentration of compound 3
was increased to 500 µM, no significant increase of DNA cross-
linking was observed (Figure 7, see Supporting Information).
Meanwhile, we found that DNA cross-linking by compound 6 was
affected by pH variation (Figure 5). These results show that the
most intense cross-linking occurred at pH 7.7 and the weaker cross-
linking was at pH 5.0. On the contrary, no DNA cross-linking
occurred at all at pH 10.0, implying that the decay of o-quinone
(6) (a) Pande, P.; Shearer, J.; Yang, J.; Greenberg, W. A.; Rokita, S. E. J.
Am. Chem. Soc. 1999, 121, 6773. (b) Zhou, Q.; Turnbull, K. D. J. Org.
Chem. 2000, 65, 2022.
(7) Brousmiche, D.; Wan, P. Chem. Commun. 1998, 491.
(8) Modica, E.; Zanaletti, R.; Freccero, M.; Mella, M. J. Org. Chem. 2001,
66, 41
(9) Chiang, Y.; Kresge, A. J.; Zhu, Y. J. Am. Chem. Soc. 2001, 123, 8089.
10) Mathai, K. P. J. Indian Chem. Soc. 1966, 43, 422.
(
(
(
11) Cech, T. R. Biochemistry 1981, 20, 1431.
12) Tepe, J. J.; Williams, R. M. J. Am. Chem. Soc. 1999, 121, 2951.
9
(13) Zeng, Q.-P.; Rokita, S. E. J. Org. Chem. 1996, 61, 9080.
methide intermediate was accelerated in basic buffer and that the
(
14) Zhang, R. Q.; Wong, N. B.; Lee, S. T.; Zhu, R. S.; Han, K. L. Chem.
elimination to form quinone methide occurred with difficulty
because of deprotonation of phenol in acid buffer.
Phys. Lett. 2000, 319, 213.
(15) de Dios, A. C.; Pearson, J. G.; Oldfield, E. Science 1993, 260, 1491.
16) (a) Barton, J. K. Science 1986, 233, 727. (b) Hurley, L. H. J. Med. Chem.
989, 32, 2027. (c) Qu, X.-G.; Trent, J. O.; Fokt, I.; Priebe, W.; Chaires,
(
We predicted the structure of 6 on the basis of DFT geometry
optimization and then from their 13C chemical shift calculations.
We found that the dihedral angle between the two phenyl rings
is about 35° and that the two quaternary ammonium groups were
on the same side like two anchors, thus forming a twist structure
1
14,15
J. B. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12032. (d) Dervan, P. B.
Bioorg. Med. Chem. 2001, 9, 2215. (e) Satz, A. L.; Bruice, T. C. Acc.
Chem. Res. 2002, 35, 86.
(17) Boger, D. L.; Garbaccio, R. M. Acc. Chem. Res. 1999, 32, 1043.
18) Nakatani, K.; Higshida, N.; Saito, I. Tetrahedron Lett. 1997, 38, 5005.
(
(see Supporting Information for calculation details).
JA029040O
J. AM. CHEM. SOC.
9
VOL. 125, NO. 5, 2003 1117