J.-H. Ho, T.-I. Ho / Tetrahedron Letters 44 (2003) 4669–4672
4671
1a might be faster that the oxidative photocyclization
reaction can not compete with it, so there is no cyclized
product 4 in this case.
2. Hammond, G. S.; Saltiel, J. J. Am. Chem. Soc. 1963, 84,
4983.
3. Hammond, G. S.; Turro, N. J. Science 1962, 142, 1541.
4. Kaupp, G. Angew. Chem. 1980, 92, 245; Angew. Chem.,
Int. Ed. Engl. 1980, 19, 243.
5. Waldeck, D. H. Chem. Rev. 1991, 91, 415.
6. Mallory, F. B.; Mallory, C. W. Organic Reactions; Wiley:
New York, 1983; Vol. 30, p. 1.
7. Hugelshofer, P.; Kalvoda, J.; Schaffner, K. Helv. Chim.
Acta 1960, 165, 1322.
8. Zimmerman, H. E. In Rearrangement in Ground and
Excited States; de Mayo, P., Ed.; Academic Press: New
York, 1980; Vol. 3, p. 131.
9. Hammond, G. S.; Saltiel, J.; Lamola, A. A.; Turro, N. J.;
Bradshaw, J. S.; Cowan, D. O.; Counsell, R. C.; Vogt,
V.; Dalton, C. J. Am. Chem. Soc. 1964, 86, 3197.
10. Mallory, F. B.; Wood, C. S.; Cordon, J. T.; Lindquist, L.
C.; Savitz, M. L. J. Am. Chem. Soc. 1962, 84, 4361.
11. Mallory, F. B.; Cordon, J. T.; Wood, C. S. J. Am. Chem.
Soc. 1963, 85, 828.
12. Mallory, F. B.; Wood, C. S. Tetrahedron Lett. 1965, 6,
2643.
13. Horspool, W. M. J. Photochem. 1984, 27, 122.
14. Kupchan, S. M.; Wormser, H. C. Tetrahedron Lett. 1965,
6, 359.
15. Lewis, F. D. Acc. Chem. Res. 1979, 12, 152.
16. Lewis, F. D.; Ho, T.-I. J. Am. Chem. Soc. 1977, 99, 7991.
17. Lewis, F. D.; Ho, T.-I.; Simpson, J. T. J. Am. Chem. Soc.
1982, 104, 1924.
18. Yasuda, M.; Isami, T.; Kubo, J.; Mizutani, M.;
Yamashita, T.; Shima, K. J. Org. Chem. 1992, 57, 1351.
19. Somers, J. B. M.; Couture, A.; Lablache-Combier, A.;
Laarhoven, W. H. J. Am. Chem. Soc. 1985, 107, 1387.
20. Buquet, A.; Couture, A.; Lablache-Combier, A. J. Org.
Chem. 1979, 44, 2300.
21. Carruthers, W.; Stewart, H. N. W. J. Chem. Soc. 1965,
6221.
22. Carruthers, W.; Stewart, H. N. W. Tetrahedron Lett.
1965, 6, 301.
23. Loader, C. E.; Timmons, C. J. J. Chem. Soc. (C) 1967,
1677.
The product distributions between products 2 and 3 are
also dependent on the substituents. Because the ring-
opening step is photoreversible,39 the formation rate of
(E)-4-arylbut-3-en-2-one 3 will be effected by the acid-
catalyzed hydrolysis of haloalkenyl group of 5. For
further illustration, intermediate cis-5b was isolated and
irradiated in different acid concentrations. Photolysis of
cis-5b with 0.5 M hydrochloric acid give both products
2b and 3, but it only gives product 2b in 0.005 M
hydrochloric acid with the same irradiation period.
Compared to the reported case of 2-halopropenes,40 the
hydrolysis rate for 2-fluoropropene is 860 times greater
than that of 2-bromopropene. Since the hydrolysis rate
is accelerated by the fluorine atom, intermediate 5a
must be hydrated rapidly to product 3a. Thus the yield
of product 3a from irradiation of 1a is higher than that
of the other cases (1b and 1c). The conversion of 5 to 3
can either be photochemical or thermal depending on
the halogen substituents.
In summary, we have demonstrated that new rearrange-
ment is possible for the halogen substituted styrylhete-
rocycles when photolysis is carried out in the presence
of a protic acid. Due to the competing formal [1,3]
hydrogen shift and ring opening of dihydrophenan-
threne intermediate 7, a new product 2 and a new
hydrolysis product 3 are observed. The product ratio is
dependent on the halogen substituents. It is also shown
that photolysis of 5 can reversibly be transferred back
to 2. Halogen substituent effects indicate that yields of
products 4 increase while products 3 decrease from
fluorine to bromine. The bromine derivative 1c gives
highest yield for product 4. Finally, it is interesting to
note that similar behavior between the styrylthiophenes
and styryfurans is observed in terms of their photore-
sponse both to the acids and to the halogen substituent
effects.
24. Ho, T.-I.; Wu, J.-Y.; Wang, S.-L. Angew. Chem., Int. Ed.
1999, 38, 2558.
Supplementary material
25. Wu, J.-Y.; Ho, J.-H.; Shih, S.-M.; Hsieh, T.-L.; Ho, T.-I.
Org. Lett. 1999, 1, 1039.
26. Huyser, E. S.; Neckers, D. C. J. Org. Chem. 1964, 29,
276.
The following supplementary material is available on-
1
line: H and 13C NMR spectral data of products 2a–f,
3a–b and 5a–c.
27. Hoffmann, N.; Pete, J.-P. J. Org. Chem. 1997, 62, 6952.
28. Bryce-Smith, D.; Gilbert, A. J. Chem. Soc., Chem. Com-
mun. 1968, 19.
Acknowledgements
29. Umbricht, G.; Hellman, M. D.; Hegedus, L. S. J. Org.
Chem. 1998, 63, 5173.
30. Schulta, A. G.; Anotlinakis, E. G. J. Org. Chem. 1996,
61, 4555.
31. Mori, T.; Wada, T.; Inoue, Y. Org. Lett. 2000, 2, 3401.
32. Hayamizu, T.; Ikeda, M.; Maeda, H.; Mizuno, K. Org.
Lett. 2001, 3, 1277.
The financial supports from National Science Council
of Republic of China (Taiwan) is gracefully acknowl-
edged. The authors thank Professor F. D. Lewis for
valuable comments.
33. Ohkura, K.; Sugaoi, T.; Nishijima, K.; Kuge, Y.; Seki, K.
Tetrahedron Lett. 2002, 43, 3113.
34. Ho, T.-I.; Ho, J.-H.; Wu, J.-Y. J. Am. Chem. Soc. 2000,
122, 8575.
References
1. Stephenson, L. M.; Hammond, G. S. Angew. Chem., Int.
Ed. Engl. 1969, 8, 261.
35. Ho, J.-H.; Ho, T.-I.; Liu, R. S. H. Org. Lett. 2001, 3, 409.