10.1002/anie.201800937
Angewandte Chemie International Edition
COMMUNICATION
still achieved complete conversion within 20 min. In contrast, the
SPOCQ reaction (k2 = 3.3 M-1s-1 for first 70% conversion;
afterwards more complex and slower kinetics) achieves
quantitative conversion only in 4 h. This further emphasizes the
positive role played by smaller sterics of the cyclopropene motif
as compared to a bulky cyclooctyne. We believe the “clean
kinetics” of this reaction to be a significant benefit over its
predecessor interfacial SPOCQ. These kinetics also reveal a
more general point on the difference between dilute solution data
and those relevant in crowded environments. The surface-bound
cyclopropene-o-quinone click is only 4 times lower than in solution.
In contrast, the SPOCQ reaction is ~150 times slower on the
surface than in solution. In other words: the solution-based
kinetics, but also quantum chemical data mimicking solutions,
provide an important first indication on the relative rate in crowded
environments – however, these data may still be up to two orders
of magnitude off when predicting relative rates and efficiencies of
different click or coupling reactions under the conditions whether
these reactions are actually most useful, namely in crowded
environments. One-on-one transposition of solution data to e.g.
surface modification, polymer modification or bio-conjugation
efficacy is therefore not generally allowed, and more detailed
considerations and/or calculations are in order. Surface-bound
rates might more closely mimic the rates relevant in those
situations.
show that the small size of the cyclopropene moiety is highly
advantageous in crowded environments, as present in e.g.
polymer and bio-conjugation reactions, and on surfaces.
Furthermore, we believe that the use of 1–methyl–3–substituted
cyclopropenes will therefore also be highly useful for bio–
conjugations that require small reagents.
Acknowledgements
The authors thank NanoNextNL (program 5A), and NWO (ECHO
project 712.012.006) for funding, Reamon Bouman and Dr.
Sidharam Pujari for practical assistance, and Prof. Floris van Delft
for insightful discussions.
Keywords: metal–free click; SPOCQ; polymer brushes; monolayers;
cyclopropene; kinetics; mass spectrometry.
[1]
[2]
J. E. Moses, A. D. Moorhouse, Chem. Soc. Rev. 2007, 36, 1249-1262.
a) P. Thirumurugan, D. Matosiuk, K. Jozwiak, Chem. Rev. 2013, 113,
4905-4979; b) V. Castro, H. Rodríguez, F. Albericio, ACS Comb. Sci.
2016, 18, 1-14.
[3]
a) C. Barner-Kowollik, F. E. Du Prez, P. Espeel, C. J. Hawker, T. Junkers,
H. Schlaad, W. Van Camp, Angew. Chem. Int. Ed. 2011, 50, 60-62;
Angew. Chem. 2011, 123, 61-64; b) J. Escorihuela, A. T. M. Marcelis, H.
Zuilhof, Adv. Mater. Interfaces 2015, 2, 1500135.
[4]
[5]
a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001,
40, 2004-2021; Angew. Chem. 2001, 113, 2056-2075; b) C. W. Tornøe,
C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057-3064.
S. T. Laughlin, J. M. Baskin, S. L. Amacher, C. R. Bertozzi, Science 2008,
320, 664-667.
1.0
0.0
0.8
-0.5
[6]
[7]
A. C. Knall, C. Slugovc, Chem. Soc. Rev. 2013, 42, 5131-5142.
J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem. Int.
Ed. 2014, 53, 9430-9448; Angew. Chem. 2014, 126, 9584-9603.
a) S. Li, P. Wu, J. E. Moses, K. B. Sharpless, Angew. Chem. Int. Ed.
2017, 56, 2903-2908; Angew. Chem. 2017, 129, 2949-2954; b) B. Gao,
L. Zhang, Q. Zheng, F. Zhou, L. M. Klivansky, J. Lu, Y. Liu, J. Dong, P.
Wu, K. B. Sharpless, Nat. Chem. 2017, 9, 1083.
0.6
-1.0
[8]
0.4
-1.5
k2 = 0.50 ± 0.01 M-1s-1
0.2
-2.0
0
2
4
6
8
10
12
[9]
a) C. D. McNitt, H. Cheng, S. Ullrich, V. V. Popik, M. Bjerknes J. Am.
Chem. Soc. 2017, 139, 14029–14032; b) H. Frisch, D. E. Marschner, A.
S. Goldmann, C. Barner-Kowollik, Angew. Chem. Int. Ed. 2018, 57,
2036–2045; Angew. Chem. 2018, 130, 2054–2064, and references in
there.
Time (min)
0.0
0
10
20
30
Time (min)
40
50
60
Figure 5. Normalized DART–HRMS intensity vs time (min) for reaction between
M3 surfaces and 5. Inset: Linear plots of ln [(I – It)/(I – I0)] vs time to obtain the
pseudo-first order constants, from which k2 was determined.
[10] H. L. Kim, K. Sachin, H. J. Jeong, W. Choi, H. S. Lee, D. W. Kim, ACS
Med. Chem. Lett. 2015, 6, 402-407.
[11] a) A. Borrmann, O. Fatunsin, J. Dommerholt, A. M. Jonker, D. W. P. M.
Löwik, J. C. M. van Hest, F. L. van Delft, Bioconjugate Chem. 2015, 26,
257-261; b) J. J. Bruins, B. Albada, F. L. van Delft, Chem. Eur. J., doi:
10.1002/chem.201703919.
As suggested by Sharpless, Barner–Kowollik and others,[4a,9]
click reactions have to fulfill stringent criteria of fast rate, high
efficiency, modularity and orthogonality. We demonstrate that
indeed our reaction proceeds with fast kinetics and high
efficiencies both in solution and on surfaces for two distinct
examples, monolayers and polymer brushes, thus validating its
click character. Finally, the very slow reactivity of 1,3-disubstituted
cyclopropenes towards e.g. azides and nitrile imines[23] should
allow a preferential and orthogonal reactivity towards quinones as
it does towards tetrazines.[23]
In conclusion, we report a novel strain–promoted reaction
between o-quinones and strained alkenes (1–methyl-3–
substituted cyclopropenes) with reaction rates paralleling that of
click reactions of cyclopropenes with unsymmetrical tetrazines. In
addition, we show that reaction is quantitative for monolayer
functionalization and high yielding for polymer brushes. Finally we
[12] J. J. Bruins, A. H. Westphal, B. Albada, K. Wagner, L. Bartels, H. Spits,
W. J. H. van Berkel, F. L. van Delft, Bioconjugate Chem. 2017, 28, 1189-
1193.
[13] A. George, G. Krishna Priya, M. Ilamaran, N. R. Kamini, S. Ganesh, S.
Easwaramoorthi, N. Ayyadurai, ChemistrySelect 2017, 2, 7117-7122.
[14] A. M. Jonker, A. Borrmann, E. R. H. van Eck, F. L. van Delft, D. W. P. M.
Löwik, J. C. M. van Hest, Adv. Mater. 2015, 27, 1235-1240.
[15] D. Nematollahi, S. Dehdashtian, Tet. Lett. 2008, 49, 645-649.
[16] D. Gahtory, R. Sen, S. Pujari, Q. Zheng, J. E. Moses, K. B. Sharpless, H.
Zuilhof, submitted to Angew. Chem. 2018.
[17] R. Sen, J. Escorihuela, F. L. van Delft, H. Zuilhof, Angew. Chem. Int. Ed.
2017, 56, 3299-3303; Angew. Chem. 2017, 129, 3347-3351.
[18] a) J. Yang, J. Šečkutė, C. M. Cole, N. K. Devaraj, Angew. Chem. Int. Ed.
2012, 51, 7476-7479; Angew. Chem. 2012, 124, 7594-7597; b) J. Yang,
This article is protected by copyright. All rights reserved.