2012
events with fluorescent sensors and switches. Chem Rev 97:1515–
J Fluoresc (2011) 21:2005–2013
21. Xiang Y, Tong AJ, Jin PY, Ju Y (2006) New fluorescent
rhodamine hydrazone chemosensor for Cu(II) with high selectiv-
ity and sensitivity. Org Lett 8(13):2863–2866
22. Zhao M, Yang X, He S, Wang L (2009) A rhodamine-based
chromogenic and fluorescent chemosensor for copper ion in
aqueous media. Sens Actuators B 135(2):625–631
23. Zhang X, Shiraishi Y, Hirai T (2007) Cu(II)-selective green
fluorescence of a rhodamine-diacetic acid conjugate. Org Lett 9
(24):5039–5042
24. Swamy KMK, Ko SK, Kwon SK, Lee HN, Mao C, Kim JM, Lee KH,
Kim J, Shin I, Yoon J (2008) Boronic acid-linked fluorescent and
colorimetric probes for copper ions. Chem Commun 45:5915–5917
25. Xiang Y, Li Z, Chen X, Tong A (2008) Highly sensitive and
selective optical chemosensor for determination of Cu2+ in
aqueous solution. Talanta 74(5):1148–1153
26. Zhao Y, Zhang XB, Han ZX, Qiao L, Li CY, Jian LX, Shen GL,
Yu RQ (2009) Highly sensitive and selective colorimetric and
Off–On fluorescent chemosensor for Cu2+ in aqueous solution and
living cells. Anal Chem 81(16):7022–7030
27. Lee MH, Wu JS, Lee JW, Jung JH, Kim JS (2007) Highly
sensitive and selective chemosensor for Hg2+ based on the
rhodamine fluorophore. Org Lett 9(13):2501–2504
28. Wu JS, Hwang IC, Kim KS, Kim JS (2007) Rhodamine-based
Hg2+ selective chemodosimeter in aqueous solution: fluorescent
off-on. Org Lett 9(5):907–910
1566
2. Beija M, Afonso CAM, Martinho JMG (2009) Synthesis and
applications of Rhodamine derivatives as fluorescent probes.
Chem Soc Rev 38(8):2410–2433
3. Han WS, Lee HY, Jung SH, Lee SJ, Jung JH (2009) Silica-based
chromogenic and fluorogenic hybrid chemosensor materials.
Chem Soc Rev 38(7):1904–1915
4. Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors
based on amplifying fluorescent conjugated polymers. Chem Rev
107(4):1339–1386
5. Cho DG, Sessler JL (2009) Modern reaction-based indicator
systems. Chem Soc Rev 38(6):1647–1662
6. Wolfbeis OS (2005) Materials for fluorescence-based optical
chemical sensors. J Mater Chem 15(26–27):2657–2669
7. Soylak M, Unsal YE (2010) Chromium and iron determinations in
food and herbal plant samples by atomic absorption spectrometry
after solid phase extraction on single-walled carbon nanotubes
(SWCNTs) disk. Food Chem Toxicol 48(6):1511–1515
8. Ghaedi M, Shokrollahi A, Niknam K, Soylak M (2009) Cloud
point extraction of copper, zinc, iron and nickel in biological and
environmental samples by flame atomic absorption spectrometry.
Sep Sci Technol 44(3):773–786
9. Aydin FA, Soylak M (2010) Separation, preconcentration and
inductively coupled plasma-mass spectrometric (ICP-MS) deter-
mination of thorium(IV), titanium(IV), iron(III), lead(II) and
chromium(III) on 2-nitroso-1-naphthol impregnated MCI GEL
CHP20P resin. J Hazard Mater 173(1–3):669–674
29. Xi P, Huang L, Liu H, Jia P, Chen F, Xu M, Zeng Z (2009) Dual
rhodamine urea derivative, a novel chemidosimeter for Hg(II) and
its application in imaging Hg(II) in living cells. J Biol Inorg Chem
14(6):815–819
10. Heilmann J, Boulyga SF, Heumann KG (2009) Development of
an isotope dilution laser ablation ICP-MS method for multi-
element determination in crude and fuel oil samples. J. Anal.
Atom. Spectrom 24(4):385–390
30. Huang J, Xu Y, Qian X (2009) A Rhodamine-based Hg2+ sensor
with high selectivity and sensitivity in aqueous solution: a NS2-
containing receptor. J Org Chem 74(5):2167–2170
11. Mattos CS, Carmo DR, Oliveira MF, Stradiotto NR (2008)
Voltammetric determination of total iron in fuel ethanol using a
1,10 fenantroline/nafion paste-modified electrode. Int J Electro-
nchem Sci 3(3):338–345
12. Shervedani RK, Hatefi-Mehrjardi A, Asadi-Farsani A (2007)
Sensitive determination of iron(III) by gold electrode modified
with 2-mercaptosuccinic acid self-assembled monolayer. Anal
Chim Acta 601(2):164–171
13. Lin WY, Yuan L, Feng JB, Cao XW (2008) A fluorescence-
enhanced chemodosimeter for Fe3+ based on hydrolysis of bis
(coumarinyl) Schiff base. Eur J Org Chem 2008(16):2689–2692
14. Yao JN, Dou W, Qin WW, Liu WS (2009) A new coumarin-based
chemosensor for Fe3+ in water. Inorg Chem Commun 12:116–118
15. Lin WY, Long L, Yuan L, Cao ZM, Feng JB (2009) A novel
ratiometric fluorescence Fe3+ sensor based on a phenanthroimi-
dazole chromophore. Anal Chim Acta 634(2):262–266
16. Zhang HM, Fu WF, Chi SM, Wang J (2009) An asymmetric
imidazole derivative as potential fluorescent chemosensor for Fe3+
in aqueous solution. J Lumin 129:589–594
31. Wu D, Huang W, Duan C, Lin Z, Meng Q (2007) Highly sensitive
fluorescent probe for selective detection of Hg2+ in DMF aqueous
media. Inorg Chem 46(5):1538–1540
32. Liu W, Xu L, Zhang H, You J, Zhang X, Sheng R, Li H, Wu S,
Wang P (2009) Dithiolane linked thiorhodamine dimer for Hg2+
recognition in living cells. Org Biomol Chem 7(4):660–664
33. Huang W, Song C, He C, Lv G, Hu X, Zhu X, Duan C (2009)
Recognition preference of rhodamine-thiospirolactams for mercu-
ry(II) in aqueous solution. Inorg Chem 48(12):5061–5072
34. Kwon JY, Jang YJ, Lee YJ, Kim KM, Seo MS, Nam WW, Yoon
JY (2005) A highly selective fluorescent chemosensor for Pb2+. J
Am Chem Soc 127(28):10107–10111
35. Huang KW, Yang H, Zhou ZG, Yu MX, Li FY, Gao X, Yi T,
Huang CH (2008) Multisignal chemosensor for Cr3+ and Its
application in bioimaging. Org Lett 10(12):2557–2560
36. Xiang Y, Tong AJ (2006) A new rhodamine-based chemosensor
exhibiting selective FeIII-amplified fluorescence. Org Lett 8
(8):1549–1552
37. Mao J, Wang L, Dou W, Tang XL, Yan Y, Liu WS (2007) Tuning
the selectivity of two chemosensors to Fe(III) and Cr(III). Org Lett
9(22):4567–4570
38. Bae S, Tae J (2007) Rhodamine-hydroxamate-based fluorescent
chemosensor for FeIII. Tetrahedron Lett 48:5389–5392
39. Jung HJ, Singh N, Jang DO (2008) Highly Fe3+ selective
ratiometric fluorescent probe based on imine-linked benzimid-
azole. Tetrahedron Lett 49:2960–2964
17. Mao J, He Q, Liu WS (2010) An rhodamine-based fluorescence
probe for iron(III) ion determination in aqueous solution. Talanta
80:2093–2098
18. Yang YK, Yook KJ, Tae J (2005) A rhodamine-based fluorescent
and colorimetric chemodosimeter for the rapid detection of Hg2+
ions in aqueous media. J Am Chem Soc 127(48):16760–16761
19. Yuan MJ, Zhou WD, Liu XF, Zhu M, Li JB, Yin XD, Zheng HY,
Zuo ZC, Ouyang CB, Liu HB, Li YL, Zhu DB (2008) A
multianalyte chemosensor on a single molecule: promising
structure for an integrated logic gate. J Org Chem 73(13):5008–
5014
40. Lee DY, Singh N, Jang DO (2010) A benzimidazole-based single
molecular multianalyte fluorescent probe for the simultaneous
analysis of Cu2+ and Fe3+. Tetrahedron Lett 51:1103–1106
41. Bénisvy L, Halut S, Donnadieu B, Tuchagues JP, Chottard JC, Li
Y (2006) Monomeric iron(II) hydroxo and iron(III) dihydroxo
complexes stabilized by intermolecular hydrogen bonding. Inorg
Chem 45(6):2403–2405
20. Dujols V, Ford F, Czarnik AW (1997) A long-wavelength
fluorescent chemodosimeter selective for Cu(II) ion in water. J
Am Chem Soc 119(31):7386–7387