ACS Medicinal Chemistry Letters
LETTER
for these rhamnosyl and amicetosyl glycosides that the R-L-sugar
stereochemistry is essential for the potency (cf., D-analogues 10
and 13, Table 1). It is worth noting that R-L-amicetose (7) has
previously shown greater growth inhibitory effect against an
NCI-panel of 60 human cancer cell lines than R-D-amicetose
(13) (see Supporting Information). Consistent with our pre-
vious hypothesis, all the D-rhamnose (10-12) and D-amicetose
(13-15) showed a dramatically reduced cytotoxic activity with
increasing sugar chain length (Table 1).
In summary, we have prepared and evaluated the anticancer
activity of the diastereo- and oligo-isomers of rhamnosyl and
amicetosyl digitoxigenin. The syntheses of digitoxin di-/trir-
hamnoside and di-/triamicetoside analogues were successfully
achieved in a linear and highly stereoselective fashion from a
commercially available acetylfuran. Based on the SAR study in
the comparison of our previously found potent digitoxin R-L-
rhamnose (4) and R-L-amicetose (7), we identified a significant
change of cytotoxicity by altering the diastereomeric relation-
ship; L-sugar stereochemistry is suggested to exhibit a distinct
binding orientation to its target. In addition, we demonstrated
that the important structural motif for inducing anticancer
activity can be greatly optimized by shortening the carbohy-
drate chain of digitoxin analogues. Most importantly, this work
illustrates the use of palladium-catalyzed glycosylation and de
novo asymmetric synthesis to install an array of rare sugars,
which are not readily accessible via enzymatic synthesis, in
digitoxin for the development of a potential cardiac glycoside
anticancer drug.
(3) Brown, L.; Erdmann, E.; Thomas, R. Digitalis structure-activity
relationship analyses: Conclusions from indirect binding studies with
cardiac (Naþ þ Kþ)-ATPase. Biochem. Pharmacol. 1983, 32, 2767–2774.
(4) Rathore, H.; From, A. H. L.; Ahmed, K.; Fullerton, D. S. Cardiac
Glycosides. 7. Sugar Stereochemistry and Cardiac Glycoside Activity.
J. Med. Chem. 1986, 29, 1945–1952.
(5) Katz, A.; Lifshitz, Y.; Bab-Dinitz, E.; Kapri-Pardes, E.; Goldshleger,
R.; Tal, D. M.; Karlish, S. J. D. Selectivity of Digitalis Glycosides for Isoforms
of Human Na,K-ATPase. J. Biol. Chem. 2010, 285, 19582–19592.
(6) Newman, R. A.; Yang, P.; Pawlus, A. D.; Block, K. I. Cardiac
Glycosides as Novel Cancer Therapeutic Agents. Mol. Interventions
2008, 8, 36–49.
(7) Stenkvist, B.; Bengtsson, E.; Eriksson, O.; Holmquist, J.; Nordin,
B.; Westman-Naeser, S. Cardiac glycosides and breast cancer. Lancet
1979, 1, 563.
(8) Stenkvist, B.; Bengtsson, E.; Dahlqvist, B.; Eriksson, O.; Jarkrans,
T.; Nordin, B. N. Cardiac glycosides and breast cancer, revisited. N. Engl.
J. Med. 1982, 306, 484.
(9) Lopez-Lazaro, M.; Pastor, N.; Azrak, S. S.; Ayuso, M. J.; Austin,
C. A.; Cortes, F. Digitoxin Inhibits the Growth of Cancer Cell Lines at
Concentrations Commonly Found in Cardiac Patients. J. Nat. Prod.
2005, 68, 1642–1645.
(10) Haux, J.; Solheim, O.; Isaksen, T.; Angelsen, A. Digitoxin, in
non-toxic concentrations, inhibits proliferation and induces cell death in
prostate cancer cell lines. Z. Onkol. 2000, 32, 11–16.
(11) Wansapura, A. N.; Lasko, V.; Xie, Z.; Fedorova, O. V.; Bagrov,
A. Y.; Lingrel, J. B.; Lorenz, J. N. Marinobufagenin enhances cardiac
contractility in mice with ouabain-sensitive R1 Naþ-Kþ-ATPase. Am. J.
Physiol. Heart Circ. Physiol. 2009, 296, 1833–1839.
(12) Langenhan, L. M.; Peters, N. R.; Guzei, I. A.; Hoffmann, M.;
Thorson, J. S. Enhancing the anticancer properties of cardiac glycosides
by neoglycorandomization. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
12305–12310.
’ ASSOCIATED CONTENT
(13) Iyer, A. K. V.; Zhou, M.; Azad, N.; Elbaz, H.; Wang, L.;
Rogalsky, D. K.; Rojanasakul, Y.; O’Doherty, G. A.; Langenhan, J. M.
Direct Comparison of the Anticancer Activities of Digitoxin MeON-
Neoglycosides and O-Glycosides: Oligosaccharide Chain Length-
Dependent Induction of Caspase-9-Mediated Apoptosis. ACS Med.
Chem. Lett. 2010, 1, 326–330.
S
Supporting Information. Assay protocols, statistical
b
analysis data, synthetic procedures, characterization data, and
NMR spectra. This information is available free of charge via the
(14) Wang, H.-Y. L.; Xin, W.; Zhou, M.; Stueckle, T. A.; Rojanasakul,
Y.; O’Doherty, G. A. Stereochemical Survey of Digitoxin Monosacchar-
ides. ACS Med. Chem. Lett. 2011, 2 (1), pp 73–78.
(15) It is worth noting that other D- and L-sugar monosaccharides
were significantly less active than monosaccharides 1, 4, and 7; see ref 13.
(16) For the synthesis of R-/β-D-Boc pyranones, see: Zhou, M.;
O’Doherty, G. A. De Novo Approach to 2-Deoxy-β-glycosides: Asym-
metric Syntheses of Digoxose and Digitoxin. J. Org. Chem. 2007, 72,
2485–2493.
(17) For the synthesis of R-/β-L-Boc pyranones, see: Guo, H.;
O’Doherty, G. A. De Novo Asymmetric Synthesis of Anthrax Tetra-
saccharide and Related Tetrasaccharide. J. Org. Chem. 2008, 73, 5211–
5220.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: yrojan@hsc.wvu.edu; g.odoherty@neu.edu.
Author Contributions
All the experimental work was performed by H.-Y. L.W. The
experimental design, data analysis and manuscript preparation
was performed by all the authors.
’ ACKNOWLEDGMENT
We thank Anand Krishnan Iyer (Hampton University), Todd
A. Stueckle, and Yongju Lu (West Virginia University) for their
advice on cell culturing and cytotoxicity assays. We also thank
Jonathan Boyd (West Virginia University) for his help with
data analysis. We are grateful to the NIH (GM090259 and
GM088839) and NSF (CHE-0749451) for the support of our
research.
(18) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R.
Ruthenium (II)-Catalyzed Asymmetric Transfer Hydrogenation of
Ketones Using a Formic Acid-Triethylamine Mixture. J. Am. Chem.
Soc. 1996, 118, 2521–2522.
(19) Achmatowicz, O.; Bukowski, P.; Szechner, B.; Zwierzchowska,
Z.; Zamojski, A. Synthesis of methyl 2,3-dideoxy-DL-alk-2-enopyrano-
sides from furan compounds: A general approach to the total synthesis of
monosaccharides. Tetrahedron 1971, 27, 1973–1996.
(20) VanRheenen, V.; Kelly, R. C.; Cha, D. Y. An improved catalytic
OsO4 oxidation of olefins to cis-1,2-glycols using tertiary amine oxides
as the oxidant. Tetrahedron Lett. 1976, 17, 1973–1976.
(21) Haukaas, M. H.; O’Doherty, G. A. Enantioselective Synthesis of
2-Deoxy- and 2,3-Dideoxyhexoses. Org. Lett. 2002, 4, 1771–1774.
(22) Babu, R. S.; Zhou, M.; O’Doherty, G. A. De Novo Synthesis of
Oligosaccharides Using a Palladium-Catalyzed Glycosylation Reaction.
J. Am. Chem. Soc. 2004, 126, 3428–3429.
’ REFERENCES
(1) Greeff, K. Cardiac Glycosides, Part 1: Experimental Pharmacology.
Handbook of Experimental Pharmacology; Springer-Verlag: Berlin, New
York, 1981; Vol. 56.
(2) Yoda, A. Structure-Activity Relationships of Cardiotonic
Steroids for the Inhibition of Sodium- and Potassium-Dependent
Adenosine Triphosphatase. Mol. Pharmacol. 1973, 9, 51–60.
268
dx.doi.org/10.1021/ml100290d |ACS Med. Chem. Lett. 2011, 2, 264–269