7350
J. A. Jernelius et al. / Tetrahedron 60 (2004) 7345–7351
(CDCl3, MeOD 400 MHz):
d
5.73–5.68 (m, 2H,
CHOH), 3.66 (m, 2H, CH2OH), 1.79 (s, 3H, CH3) 1.06 (s,
CvCHCHOH), 5.64–5.53 (m, 2H, CHvCHCHOH), 4.93
(t, J¼7.6 Hz, 1H, CHOH), 4.35–4.30 (dd, J¼12.8, 7.2 Hz,
1H, CHAHBOH), 4.23–4.18 (dd, J¼12.8, 6.4 Hz, 1H,
CHAHBOH), 1.71 (dd, J¼6.8 Hz, 3H, –CH3); 13C NMR
(CDCl3, MeOD 100 MHz): d 133.5, 132.4, 130.0, 127.1,
68.7, 58.2, 18.2; HRMS calcd for C7H13O2: 129.0916.
Found: 129.0918.
3H, CH3); 13C NMR (CDCl3, 100 MHz): d 146.0, 141.8,
114.9, 113.9, 81.2, 70.4, 46.0, 21.3, 16.3; HRMS calcd for
C9H16O2Na: 179.1048. Found: 179.1043.
6.1.8. Benzylidene acetal derived from diol 27 (for proof
of relative stereochemistry). To a solution of diol 27
(5.0 mg, 0.032 mmol) in benzene (300 mL) was added
benzaldehyde (16 mL, 0.16 mmol, 5.0 equiv.) and 100 mL
of a solution consisting of 1.0 mL CH2Cl2, 3.0 mg
pTsOH·H2O, 0.10 mL MeOH (to dissolve p-TsOH). The
resulting mixture was placed under N2 atmosphere and
heated to 100 8C (temperature controlled oil bath) for 10 h.
The solution was allowed to cool to ambient temperature
and was loaded directly onto a silica gel column (eluted with
100:1 hexanes/Et2O) to give 28 as a colorless oil (6.8 mg,
0.28 mmol, 87%). Rf¼0.9 (10:1 hexanes/Et2O). IR (neat):
3081 (m), 3062 (m), 3024 (m), 2967 (s), 2917 (s), 2848 (s),
1734 (w), 1646 (m), 1457 (s), 1407 (s), 1394 (s), 1350 (s),
1300 (m), 1224 (m), 1174 (m), 1099 (s), 1029 (s), 979 (m),
916 (m), 752 (m), 696 (s), 658 (m) cm21; 1H NMR (CDCl3,
400 MHz): d 7.53 (dd, J¼8.1, 1.8 Hz, 2H, Ar–H), 7.37 (m,
3H, Ar–H), 5.74 (dd, J¼17.0, 11.3 Hz, 1H, CHvCH2),
5.56 (s, 1H, Ar–CH(O)O), 5.18 (s, 1H, CHAHBvCH), 5.14
(dd, J¼7.1, 1.1 Hz, 1H, CHAHBvCH), 5.02 (m, 1H,
CHAHBvC), 4.96 (m, 1H, CHAHBvC), 4.21 (s, 1H,
CH–CvCH2), 3.85 (d, J¼11.4 Hz, 1H, CHAHBO), 3.69
(d, J¼11.2 Hz, 1H, CHAHB O), 1.76 (s, 3H, –CH3) 1.27 (s,
3H, –CH3); 13C NMR (CDCl3, 100 MHz): d 142.3, 140.9,
138.7, 129.0, 128.4, 126.4, 115.5, 113.5, 101.8, 86.1, 77.2,
40.6, 21.9, 15.6; HRMS calcd for C16H20O2Na: 267.1361.
Found: 267.1359.
6.1.5. (5R)-Diol 18. Rf¼0.1 (1:1 hexanes/Et2O). IR (neat):
3323 (s), 3075 (w), 2967 (s), 2934 (s), 2916 (m), 1658 (w),
1628 (m), 1445 (s), 1376 (m), 1068 (m), 1046 (w), 1024 (s),
;
997 (s), 890 (m), 669 (w) cm21 1H NMR (CDCl3,
400 MHz): d 5.76 (dd, J¼8.2, 7.1 Hz, 1H, CvCHCH2OH),
4.92 (m, 1H, CHAHBvC), 4.83 (m, 1H, CHAHBvC) 4.17
(dd, J¼11.8, 8.2 Hz, 1H, CHAHBOH), 3.92 (dd, J¼11.8,
7.0 Hz, 1H, CHAHBOH), 3.84 (ddt, J¼9.7, 6.4, 2.7 Hz, 1H,
CHOH), 2.51 (dd, J¼13.5, 9.7 Hz, 1H, CH2CvCCHAHM-
CHOH), 2.23 (d, J¼6.4 Hz, 2H, CH2CHOH), 2.02 (dd,
J¼13.5, 2.7 Hz, 1H, CH2CvCCHAHMCHOH), 1.81 (s, 3H,
–CH3), 1.79 (s, 3H, –CH3); 13C NMR (CDCl3, 100 MHz): d
142.5, 127.0, 114.1, 113.4, 65.8, 57.9, 46.7, 39.5, 24.0, 22.5;
HRMS calcd for C10H18O2Na: 193.1204. Found: 193.1205.
6.1.6. (5R)-Diol 21. Rf¼0.1 (1:1 hexanes/Et2O). IR (neat):
3384 (s), 3067 (w), 3027 (w), 2960 (s), 2921 (s), 2869 (m),
1709 (m), 1636 (m), 1446 (s), 1370 (s), 1070 (m), 996 (m),
889 (m) 701 (s) cm21; 1H NMR (CDCl3, 400 MHz): d 7.42
(d, J¼7.1 Hz, 2H, Ar–H), 7.31 (dd, J¼7.3, 7.1 Hz, 2H, Ar–
H), 7.22 (dd, J¼7.3, 7.2 Hz, 1H, Ar–H), 5.63 (dd, J¼6.6,
6.6 Hz, 1H, CvCHCH2OH), 4.89 (m, 1H, CHAHBvC),
4.77 (m, 1H, CHAHBvC), 4.06 (dd, J¼11.7, 8.1 Hz, 1H,
CHAHBOH), 3.86 (dd, J¼11.7, 7.3 Hz, 1H, CHAHBOH),
2.82 (dd, J¼13.6, 3.5 Hz, 2H, CH2COH), 2.60 (d,
J¼13.4 Hz, 1H, CHAHBCOH), 2.51 (d, J¼13.4 Hz, 1H,
CHAHBCOH), 1.30 (s, 3H, –CH3), 1.28 (s, 3H, –CH3); 13
C
NMR (CDCl3, 100 MHz): d 145.8, 142.4, 137.0, 128.5,
128.2, 126.9, 125.7, 116.6, 74.4, 58.5, 51.4, 46.0, 26.1, 24.4;
HRMS calcd for C16H22O2Na: 269.1517. Found: 269.1515.
6.1.7. Diol 27. Paraformaldehyde (42 mg, 1.0 mmol) was
added (while stirring) to a solution of boronate 26 (7.8 mg,
0.050 mmol) in toluene (200 mL). The resulting mixture
was placed under nitrogen and heated to 80 8C (temperature
controlled oil bath) for 12 h. At this time, the solution was
allowed to cool to 22 8C, and volatiles were removed in
vacuo to afford a viscous black oil. The resulting black oil
was dissolved in MeOH (1.0 mL of a solution of MeOH
(5.0 mL) at 0 8C (ice bath) and acetyl chloride (100 mL,
1.4 mmol)) was added slowly with vigorous stirring
(caution: highly exothermic) and then allowed to stand at
22 8C for 5 minutes. Evaporation of volatiles (3 times)
resulted in the removal of volatile boron-derived impurities.
The resulting black oil was dissolved in a 0.5 mL of 1:1
hexanes/Et2O and purified by silica gel chromatography
(1:1 hexanes /Et2O) to give 27 as a colorless oil (6.6 mg,
0.043 mmol, 85%). Rf¼0.1 (1:1 hexanes/Et2O). IR (neat):
3386 (s), 3075 (w), 2974 (s), 2924 (s), 2873 (m), 1728 (w),
1652 (m), 1457 (m), 1426 (m), 1375 (m), 1161 (w), 1037 (s),
Acknowledgements
This research was generously supported by the NIH (GM-
57212).
References and notes
1. (a) Hoveyda, A. H.; Schrock, R. R. Chem. Eur. J. 2001, 7,
945–950. (b) Schrock, R. R.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2003, 38, 4555–4708. For general reviews on catalytic
olefin metathesis, see: (c). In Handbook of Olefin Metathesis;
Grubbs, R. H., Ed.; VCH-Wiley: Wienheim, 2003.
2. For Mo-catalyzed ARCM, see: (a) Alexander, J. B.; La, D. S.;
Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem.
Soc. 1998, 120, 4041–4142. (b) La, D. S.; Alexander, J. B.;
Cefalo, D. R.; Graf, D. D.; Hoveyda, A. H.; Schrock, R. R.
J. Am. Chem. Soc. 1998, 120, 9720–9721. (c) Weatherhead,
G. S.; Houser, J. H.; Ford, J. G.; Jamieson, J. Y.; Schrock,
R. R.; Hoveyda, A. H. Tetrahedron Lett. 2000, 41,
9553–9559. (d) Dolman, S. J.; Sattely, E. S.; Hoveyda,
1
1013 (m), 912 (m) cm21; H NMR (CDCl3, 400 MHz): d
5.92 (dd, J¼17.6, 11.0 Hz, 1H, CHvCH2), 5.20 (d,
J¼17.2 Hz, 1H, CHvCHAHB), 5.17 (d, J¼12.3 Hz, 1H,
CHvCHAHB), 5.00 (s, 2H, CH3CvCH2), 4.20 (s, 1H,