Kinetics of OH Radical Reactions
J. Phys. Chem. A, Vol. 106, No. 17, 2002 4389
where several data sets are available. At higher temperatures,
our measurements are slightly larger than those of Dunlop
and Tully but differ from the Atkinson recommendation by
less than 5%.
For the OH + DME reaction, this study confirms the
curvature of the Arrhenius plot and provides new values in
agreement with both the low temperature determinations of
2
0
21
Mellouki et al. and the measurements of Arif et al. between
2
95 and 650 K.
Measurements performed in this work for the reaction OH +
MTBE reaction are in excellent agreement with previous data
2
7
measured between 295 and 371 K by T e´ ton et al. At higher
temperatures, our values are slightly smaller than those previ-
2
1
ously measured by Arif et al.
Acknowledgment. Whalid Mellouki and Georges Le Bras
are warmly acknowledged for their continuous interest in the
progress of this work. One of us (A.B.) is also very grateful to
“
Region Centre” for financial support.
References and Notes
Figure 8. Reaction OH + MTBE. Arrhenius plot of the rate constant
and comparison with previous experimental determinations. (b, this
(1) Guibet, J. C. Carburants et Moteurs; Nouvelle Edition, Editions
Technip: Paris, 1997.
(2) Curran, H. J.; Pitz, W. J.; Westbrook, C. K.; Dagaut, P.; Boettner,
J. C.; Cathonnet, M. Int. J. Chem. Kinet. 1998, 30, 229.
2
2
26
work; 0, Cox and Goldstone; O, Bennett and Kerr; ×, Wallington
2
5
15
23
27
et al.; 3, Wallington et al.; 4, Smith et al.; +, T e´ ton et al.; ],
(3) Glaude, P. A.; Battin-Leclerc, F.; Judenherc, B.; Warth, V.; Fournet,
2
1
24
Arif et al.; [, Picquet et al.; modified Arrhenius equations: s, this
R.; C oˆ me, G. M.; Scacchi, G. Combust. Flame 2000, 121, 345.
work; - - -, all data.)
(4) Atkinson R. J. Phys. Chem. Ref. Data 1997, 26 (2), 215.
(
5) Vaghjiani, G. L.; Ravishankara, A. R. J. Chem. Phys. 1990, 92,
the two steps least-squares analysis leads to the following
expression, in the temperature domain 297-616 K:
(2), 996.
(6) De More, W. B.; Sander, S. P.; Golden, D.; Hampson, R. F.; Kurylo,
M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, C. J. NASA
JPL Pub. 1997, 97, 4.
(7) Cvetanovic, R. J.; Singleton, D. L.; Paraskevopoulos, G. J. Phys.
Chem. 1979, 83 (1), 50.
kOH+MTBE (this work) ) (6.59 ( 0.43) ×
-
19 2.40
exp[(499 ( 22)/T] cm molecule s-1
3
-1
10
T
(8) Bott, J. F.; Cohen, N. Int. J. Chem. Kinet. 1989, 21, 485.
(
9) Vaghjiani, G. L.; Ravishankara, A. R. Nature 1991, 350 (6317),
The solid line in Figure 8 corresponds to this expression.
Considering all data reported on this figure, the two steps least-
squares analysis with data weighting by wi ) 1/σi leads to a
4
06.
(10) Finlayson-Pitts, B. J.; Ezell, M. J.; Jayaweera, T. M.; Berko, H.
N.; Lai, C. C. Geophys. Res. Lett. 1992, 19 (13), 1371.
11) Dunlop, J. R.; Tully, F. P. J. Phys. Chem. 1993, 97, 11148.
12) Mellouki, A.; T e´ ton, S.; Laverdet, G.; Quilgars, A.; Le Bras, G. J.
Chim. Phys. 1994, 91, 473.
(13) Gierczak, T.; Talukdar, R.; Herndon, S. C.; Vaghjiani, G. L.;
Ravishankara, A. R. J. Phys. Chem. A 1997, 101, 3125.
(14) Calvert, J.; Pitts, J. N., Jr. Photochemistry; Wiley: New York, 1966.
15) Wallington, T. J.; Andino, J. M.; Skewes, L. M.; Siegl, W. O.;
Japar, S. M. Int. J. Chem. Kinet. 1989, 21, 993.
16) Nelson, L.; Rattigan, O.; Neavyn, R.; Sidebottom, H.; Treacy, J.;
2
(
(
second expression, in the temperature range of 230-750 K:
kOH+MTBE (all data of Figure 8) ) (1.58 ( 0.09) ×
-
20 2.93
exp[(716 ( 36)/T] cm molecule s-1
3
-1
10
T
(
The same procedure applied without data weighting leads to
(
Nielsen, O. J. Int. J. Chem. Kinet. 1990, 22, 1111.
(17) Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. J. Chem. Phys. 1977,
67, 611.
kOH+MTBE (all data of Figure 8) ) (3.97 ( 0.25) ×
-
21 3.15
exp[(752 ( 54)/T] cm molecule s-1
3
-1
10
T
(
(
18) Tully, F. P.; Droege A. T. Int. J. Chem. Kinet. 1987, 19, 251.
19) Wallington, T. J.; Liu, R.; Dagaut, P.; Kurylo, M. J. Int. J. Chem.
Conclusions
Kinet. 1988, 20, 41.
20) Mellouki, A.; T e´ ton, S.; Le Bras, G. Int. J. Chem. Kinet. 1995, 27,
91.
(21) Arif, M.; Dellinger, B.; Taylor, P. H. J. Phys. Chem. A 1997, 101,
436.
22) Cox, R. A.; Goldstone, A. Proceedings of the Second European
(
A heated PLP-LIF cell has been used to measure absolute
rate constants for reactions of OH radicals with DME and MTBE
in the temperature ranges 295-618 and 297-616 K, respec-
tively. The maximum temperature can be limited by thermal
degradation of either the H2O2 used as OH radicals precursor
or the organic reagent. From specific measurements of the OH
fluorescence signal in the absence of the photolysis light, it was
shown that the first problem is negligible up to 570 K and not
crucial up to 670 K. This point was also controlled by measuring
the rate constant of the extensively studied reaction OH + CH4.
Values obtained are in good agreement with previous determi-
nations, especially in the temperature range of 295-420 K
7
2
(
Symposium on the Physico-Chemical BehaViour of Atmospheric Pollutants,
D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1981; p 112.
(
23) Smith, D. F.; Kleindienst, T. E.; Hudgens, E. E.; McIver, C. D.;
Bufalini, J. J. Int. J. Chem. Kinet. 1991, 23, 907.
24) Picquet, B.; Heroux, S.; Chebbi, A.; Doussin, J. F.; Durand-Jolibois,
(
R.; Monod, A.; Loirat, H.; Carlier, P. Int. J. Chem. Kinet. 1998, 30, 839.
(25) Wallington, T. J.; Dagaut, P.; Liu, R.; Kurylo, M. J. EnViron. Sci.
Technol. 1988, 22, 842.
(
26) Bennett, P. J.; Kerr J. A. J. Atmos. Chem. 1990, 10, 27.
(27) T e´ ton, S.; Mellouki, A.; Le Bras, G. Int. J. Chem. Kinet. 1996, 28,
291.