S.-H. Jeon et al. / Electrochimica Acta 55 (2010) 5652–5658
5657
Table 3
formation of hydrogen bonds among the amido-ImI molecules
in the electrolyte, which increased the electrical conductivity of
Photovoltaic parameters of the DSSCs fabricated without using 4-tert-
butylpyridine. .
a
−
−
the charge carriers, I3 and I , and reduced the charge transfer
resistance of the DSSC. The increase in the open-circuit voltage
was attributed to the adsorption of amido-ImI on the surface of
the TiO2 electrode, thereby reducing the back electron transfer
from the conduction band of TiO2 and the FTO/TiO2 interface to
Jsc (mA cm 2
−
)
Voc (V)
FF
ꢀ (%)
ImI (0.7 M)
Ref-ImI
Amido-ImI
Decyl-ImI
15.87
14.72
11.63
0.63
0.67
0.64
0.44
0.54
0.47
4.4
5.3
3.5
a
−
Electrolyte consisted of 0.7 M imidazolium iodide, 0.1 M LiI, and 0.05 M I2 in
-methoxypropionitrile.
the I3 ions in the electrolyte arising from the presence of a long
3
hydrophobic chain of amido-ImI. The DSSC with the amido-ImI
electrolyte exhibited better stability than that with the ref-ImI elec-
trolyte.
increasing Voc according to Eq. (2) [46]:
ꢀ
ꢁ
ꢀ
ꢁ
kT
e
Jsc
Jo
Voc =
ln
(2)
Acknowledgment
where Jo is the exchange current density and is related to the rate of
This work was supported by the Joint Research Project under
the KOSEF-JSPS Cooperative Program in 2009.
the back electron transfer. Furthermore, the adsorption of amido-
ImI to the surface of the TiO particles can also increase Voc by the
2
negative shift of the flatband potential (VFB) of the dye-coated TiO2
electrode, similarly to 4-tert-butylpyridine [47]. Under Fermi level
pinning, these two parameters are linked by Eq. (3) [48]:
References
ꢂ
ꢂ
[
[
1] B. O’Reagen, M. Grätzel, Nature 353 (1991) 737.
2] M. Grätzel, Nature 414 (2001) 338.
ꢂ
ꢂ
Voc = VFB − V
(3)
red
−
3
−
[3] M. Grätzel, Inorg. Chem. 44 (2005) 6841.
4] M. Grätzel, J. Photochem. Photobiol. A: Chem. 164 (2004) 3.
where V
is the reduction potential of the I /I redox couple.
red
[
Assuming that V remains the same regardless of the presence of
[5] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys.
45 (2006) L638.
red
amido-ImI in the electrolyte, the negative shift of VFB can increase
the Voc value of the DSSC. To investigate whether the adsorption
of amido-ImI enhanced the corresponding Voc value, Voc was mea-
sured again without using 4-tert-butylpyridine in each electrolyte.
Values of 0.63 V, 0.67 V and 0.64 V were measured for the DSSCs
with ref-ImI, amido-ImI and decyl-ImI, respectively, as shown in
Table 3 and the inset of Fig. 4. This result confirmed that amido-ImI
did indeed enhance Voc by adsorption as 4-tert-butylpyridine.
[
[
[
[
6] Q.B. Meng, K. Takahashi, X.T. Zhang, I. Sutanto, T.N. Rao, O. Sato, A. Fujishima,
Langmuir 19 (2003) 3572.
7] N. Hirata, J.E. Kroeze, T. Park, D. Jones, S.A. Haque, A.B. Holmes, J.R. Durrant,
Chem. Commun. (2006) 535.
8] P. Wang, S.M. Zakeeruddin, J.E. Moser, M. Grätzel, J. Phys. Chem. B 107 (2003)
13280.
9] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida,
J. Phys. Chem. B 107 (2003) 4374.
[
[
10] H. Yang, C.Z. Yu, Q.L. Song, Y.Y. Xia, F.Y. Li, Z.G. Chen, X.H. Li, T. Yi, C.H. Huang,
Chem. Mater. 18 (2006) 5173.
11] L. Wang, S. Fang, Y. Lin, X. Zhou, M. Li, Chem. Commun. (2005) 5687.
3.3. Long-term stability
[12] P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M.
Grätzel, Nat. Mater. 2 (2003) 402.
[
[
13] T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, P. Falaras, Nano Lett. 2 (2002) 1259.
14] J.H. Kim, M.S. Kang, Y.J. Kim, J. Won, N.-G. Park, Y.S. Kang, Chem. Commun.
(2004) 1662.
15] J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fang, S. Yin, T. Sato, Adv. Funct.
Mater. 17 (2007) 2645.
The electrolyte based on amido-ImI, with an amide group in its
hydrophobic alkyl chain, was expected to contribute to the stabil-
ity of DSSCs through the suppression of solvent evaporation. Fig. 8
compares the changes in the photovoltaic properties of the solar
cells with time. Remarkably, the DSSC based on the ref-ImI elec-
trolyte lost more than half (52%) of its initial Jsc value after 21 d,
while the Jsc of the cell fabricated with amido-ImI was reduced
by only 20% after the same period. The concentration of the imi-
dazolium iodides was set at 0.7 M. The differences in Voc and FF
were negligible compared with that of Jsc. As a result, the overall
energy conversion efficiencies of the DSSCs with amido-ImI and
ref-ImI were decreased to 73% and 65%, respectively, after 21 d,
suggesting that the amido-ImI electrolyte offers better stability
than that of the conventional liquid electrolyte containing ref-ImI.
In particular, the enhanced stability in Jsc was attributed to for-
mation of hydrogen bonds among the amido-ImI molecules. This
hydrogen-bond formation increases the viscosity of the organic
solution, and thus improves the solvent conserving ability of the
electrolyte. The improved stability of the DSSC with amido-ImI,
compared to that with ref-ImI, was attributed to this solvent hold-
ing ability.
[
[
16] S. Spiekermann, G. Smestad, J. Kowalik, M. Grätzel, Synth. Met. 121 (2001) 1603.
[17] H. Usui, H. Mataui, N. Tanabe, S. Yanagida, J. Photochem. Photobiol. A: Chem.
164 (2004) 97.
[
[
[
18] J. Xia, F. Li, C.H. Huang, Sol. Energy Mater. Sol. Cells 90 (2006) 944.
19] F. Cao, G. Oskam, P.C. Searson, J. Phys. Chem. 99 (1995) 17071.
20] J. Wu, Z. Lan, D. Wang, S. Hao, J. Lin, T. Sato, J. Photochem. Photobiol. A: Chem.
181 (2006) 333.
21] Z. Lan, J.H. Wu, D.B. Wang, S.C. Hao, J.M. Lin, Sol. Energy 80 (2006) 1483.
22] T. Kato, A. Okazaki, S. Hayase, J. Photochem. Photobiol. A: Chem. 179 (2006) 42.
23] W. Li, J. Kang, X. Li, S. Fang, Y. Lin, G. Wang, X. Xiao, J. Photochem. Photobiol. A:
Chem. 170 (2005) 1.
[
[
[
[
[
24] C. Longo, J. Freitas, M.-A. De Paoli, J. Photochem. Photobiol. A: Chem. 159 (2003)
33.
25] A.F. Nogueira, J.R. Durrant, M.A. De Paoli, Adv. Mater. 13 (2001) 826.
[26] S. Murai, S. Mikoshiba, H. Sumino, T. Kato, S. Hayase, Chem. Commun. (2003)
534.
[
[
1
27] P. Wang, S.M. Zakeeruddin, I. Exnar, M. Grätzel, Chem. Commun. (2002) 2972.
28] K. Suzuki, M. Yamaguchi, S. Hotta, N. Tanabe, S. Yanagida, J. Photochem. Pho-
tobiol. A: Chem. 164 (2004) 81–85.
[
29] W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Chem. Commun.
(
2002) 374.
[
30] P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, J. Am. Chem. Soc. 125
(2003) 1166.
31] H. Ohno, Electrochim. Acta 46 (2001) 1407.
32] M. Yoshizawa, H. Ohno, Electrochim. Acta 46 (2001) 1723.
33] F.F. Santiago, J. Bisquert, E. Palomares, L. Otero, D.B. Kuang, S.M. Zakeeruddin,
M. Grätzel, J. Phys. Chem. C 111 (2007) 6550.
[
[
[
4
. Conclusions
The DSSC with an electrolyte containing
a
newly syn-
[34] M.A. Susan, T. Kaneko, A. Noda, M. Watanabe, J. Am. Chem. Soc. 127 (2005)
976.
35] H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito, Y. Miyazaki, Chem. Lett.
2001) 26.
[36] N. Papageorgiou, P. Bonhote, H. Petterson, A. Azam, M. Grätzel, J. Electrochem.
Soc. 143 (1996) 3099.
4
thesized amido-ImI, 1-(2-hexanamidoethyl)-3-methylimidazol-3-
ium iodide exhibited a short-circuit photocurrent density (Jsc) and
overall energy conversion efficiency that were improved by 7.2%
and 10.2%, respectively, compared to those obtained with the
DSSC with ref-ImI, i.e., 1-hexyl-2,3-dimethylimidazolium iodide.
The amido-ImI-induced enhancement of Jsc was attributed to the
[
(
[
[
37] J. Fuller, R.T. Carlin, R.A. Osteryoung, J. Electrochem. Soc. 144 (1997) 3881.
38] M. Watanabe, S. Yamada, K. Sanui, N. Ogata, J. Chem. Soc., Chem. Commun.
(1993) 929.