Ruthenium(II) N,S-Heterocyclic Carbene Diphosphine Complexes
1
22.7, 119.1, 113.5 (Ar-Cmeta/ortho, N/S), 76.8–77.3 (Cp-C, overlapping sin-
glets), 76.5 (d, JCP =12.0 Hz; Cp-C), 75.8 (d, JCP =10.0 Hz; Cp-C), 75.5
(dd, JCP =8.6, 7.3 Hz; Cp-C), 72.2 (d, JCP =6.0 Hz; Cp-C), 72.0 (d, JCP
Experimental Section
All manipulations were carried out under a dry nitrogen atmosphere by
=
using standard Schlenk techniques. Complex 1 was prepared according to
7.0 Hz; Cp-C), 71.7(d, JCP=6.0 Hz; Cp-C), 70.5 (d, J =5.0 Hz; Cp-C),
CP
[
11j]
31
the literature method.
Other commercially available chemicals were
56.0 (CH ), 24.4 ppm (CH COO); P NMR (CDCl ): d=49.4, 47.6 ppm
2
3
3
purchased from Sigma–Aldrich. All solvents were freshly distilled from
standard drying agents. H (500.1), P (202.4) and C(125.8 MHz) NMR
(d, JPP =24.8 Hz); MS (ESI, positive mode): m/z (%): 940.09 (100)
1
31
13
+
[MꢀBr] ; elemental analysis calcd (%) for C H BrFeNO P RuS: C
5
0
42
2 2
spectra were recorded in ppm on a Bruker AMX 500 spectrometer. The
58.89, H 4.15, N 1.37; found: C 58.89, H 4.14, N 1.48.
1
13
1
chemical shifts (d) are referenced to TMS for H and C{ H} and H
3
PO
4
3
1
1
2
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
(85%) for P{ H}. ESI mass spectra were obtained by using a Finnigan
A
H
U
G
R
N
U
G
A
H
U
G
R
N
U
G
A
H
U
G
R
N
U
(MeCOO)
A
H
U
G
R
N
N
LCQ. Elemental analyses were performed on a Perkin–Elmer PE 2400
elemental analyzer. The yields of transfer hydrogenation products were
determined by using Hewlett Packard Series 6890 GC (Santa Clara, CA,
USA) coupled to a Hewlett Packard 5973 MS detector.
1
Yield: 0.17 g (0.19 mmol, 95%); H NMR (CDCl
3
): d=8.31–8.27 (m, 2H;
Ar-H), 7.99–7.96 (m, 2H; Ar-H), 7.58–7.55 (m, 2H; Ar-H), 7.38–7.29 (m,
2
), 7.23 (m, 3H; Ar-H), 7.15–7.03 (m, 6H; Ar-H), 6.89–
.81 (m, 5H; Ar-H), 6.64 (d, 1H, JHH =8.2 Hz; Ar-H), 4.56 (d, 1H, JHH
9
H; Ar-H, CH
6
=
2
4.0 Hz; CH ), 2.95 (m, 1H; CH2
A
H
U
G
E
N
N
(CH ) CH ), 2.81 (m, 1H; CH2
General Procedures for the Preparation of [RuBr
RBzTh)] Complexes (2–6)
A
H
U
G
R
N
U
G
A
T
N
T
N
U
G
A
H
N
T
E
U
G
2
2
2
2
A
H
U
G
R
N
U
G
2
)
)
2
CH
CH
2
), 2.68–2.61 (m, 2H; CH
), 2.06–1.94 (m, 2H; CH
2
A
T
N
T
N
U
G
2
)
2
CH
2
), 2.14 (m, 1H; CH
), 1.69 (m, 1H; CH
2
A
H
N
T
E
N
G
2
2
2
2
A
H
U
G
E
N
N
2
1
)
2
3
CH
2
2
A
mixture of [RuBr
A
H
U
G
R
N
N
(CH
3
COO)
2
A
H
U
T
E
N
N
(PPh
3
)
2
A
H
U
G
R
N
U
G
2 2 2 3 3
ACHTUNGTREUNNGN( CH ) CH ), 1.46 ppm (s, 3H; CH COO); C NMR (CDCl ): d=229.0
0
.20 mmol) and diphosphorus ligands (0.22 mmol) was suspended in
(JCP =14.9, 13.0 Hz; NCS), 186.2 (CH COO), 144.5, 139.2, 138.9, 137.9,
3
THF. The resultant orange solution was refluxed (2–5 and 6a) or stirred
at RT (6b) for 3 h. Upon cooling, the solvent was removed under
vacuum, leaving a yellow or orange residue, which was then washed sev-
137.5, 135.7, 135.3, 135.1, 134.8, 134.4, 133.8, 132.8, 132.6, 131.7, 129.4,
129.2, 129.0, 128.2, 127.9, 127.7, 127.5, 126.9 (Ar-C), 124.5, 122.4, 118.7,
113.5 (Ar-Cmeta/ortho, N/S), 56.1 (CH ), 27.3 (J =27.9 Hz; CH
2
CP
2
A
H
U
G
R
N
U
(CH ) CH ),
2
2
2
eral times with hexane. The powder product was redissolved in CH
and diffused with hexane. The yellow to orange crystals of 2–6 were ob-
2
Cl
2
25.1–25.0 (m, overlapping singlets; CH2
A
H
U
G
R
N
U
G
2
3
2
2
3
2
1
A
H
U
T
N
N
(CH ) CH ), 20.6 ppm (CH
2
2
2
2
A
H
U
G
R
N
N
2
2
tained within a week.
37.3 ppm (d, J =28.5 Hz); MS (ESI, positive mode): m/z (%): 812.11
PP
+
(
100) [MꢀBr] ; elemental analysis calcd (%) for C44
2 2
H42BrNO P RuS: C
2
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
[RuBr
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
(h -dppm)
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
(MeCOO)
A
H
U
G
R
N
N
(3-RBzTh)] (2)
5
9.26, H 4.75, N 1.57; found: C 59.26, H 4.82, N 1.70.
1
Yield: 0.16 g (0.19 mmol, 94%); H NMR (CDCl
3
): d=8.25–8.22 (m, 2H;
2
A
H
U
G
R
N
U
G
A
H
U
G
R
N
N
(h -dppp)
A
H
U
G
R
N
U
G
A
H
U
G
R
N
U
G
Ar-H), 8.13–8.09 (m, 2H; Ar-H), 7.48–7.32 (m, 10H; Ar-H), 7.29–7.07
m, 10H; Ar-H), 7.07–6.94 (m, 3H; Ar-H), 6.74 (d, 1H,
2
(
J
HH =16.4 Hz;
Yield: 0.16 g (0.18 mmol, 91%); H NMR (CDCl ): d=8.06–8.05 (m, 2H;
Ar-H), 7.85–7.82 (m, 2H; Ar-H), 7.48–7.41 (m, 5H; Ar-H), 7.38 (m, 1H;
Ar-H), 7.30–7.10 (m, 13H; Ar-H), 7.05–6.95 (m, 5H; Ar-H, CH ), 6.84
(d, 1H, JHH =8.2 Hz; Ar-H), 5.16 (d, 1H, JHH =15.8 Hz; CH ), 3.10–2.99
3
2
2
CH
2
), 6.31 (d, 1H,
J
HH =16.4 Hz; CH
2
), 5.22 (m, 1H,
J
PH =15.1, 10.4,
2
2
2
J
HH =10.7 Hz; PCH
P), 1.53 ppm (s, 1H; CH
NCS), 186.1 (CH COO), 137.3, 136.2, 136.0, 134.2, 133.9, 133.3, 133.0,
2
P), 4.93 (m, 1H,
J
PH =14.5, 10.7,
J
HH =10.7 Hz;
2
1
3
PCH
2
3
COO); C NMR (CDCl
3
): d=231.0
2
(
3
(m, 2H; CH CH CH ), 2.66–2.60 (m, 2H; CH CH CH ), 2.45 (m, 1H;
2
2
2
2
1
1
32.9, 132.2, 132.1, 132.0, 131.9, 130.2, 130.1, 129.6, 128.7, 128.6, 128.2,
2 2 2 2 2 2 3
CH CH CH ), 2.08 (m, 1H; CH CH CH ), 1.35 ppm (s, 3H; CH COO);
C NMR (CDCl ): d=227.9 (J =14.0 Hz; NCS), 185.2 (CH COO),
3 CP 3
1
3
27.7, 127.0 (Ar-C), 125.1, 122.8, 119.6, 113.7 (Ar-Cmeta/ortho, N/S), 56.4
3
1
(
CH
2
), 51.0 (JPC =23.0 Hz; PCH
2
P), 24.6 ppm (CH
3
COO); P NMR
145.0, 137.4, 136.4, 136.0, 135.3, 135.2, 135.0, 134.7, 134.3, 134.1, 134.0,
133.3, 133.2, 131.8, 129.4, 129.3, 129.1, 128.2, 128.0, 127.9, 127.7, 127.6,
127.5, 127.4, 127.1, 126.7 (Ar-C), 125.0, 122.9, 119.1, 114.0 (Ar-Cmeta/ortho, N/S),
56.4 (CH ), 29.0 (dd, J =30.9, 4.0 Hz; CH CH CH ), 28.9 (d, J =32.9;
(
CDCl
3
): d=14.2, 11.2 ppm (d, JPP =78.1 Hz); MS (ESI, positive mode):
+
m/z (%): 770.03 (100) [MꢀBr] ; elemental analysis calcd (%) for
C
1
41
H
2 2
36BrNO P RuS: C 57.95, H 4.27, N 1.65; found: C 57.71, H 4.15, N
2
CP
2
2
2
CP
3
1
.64.
CH CH CH ), 24.5 (CH COO), 20.5 ppm (CH CH CH ); P NMR
2
2
2
3
2
2
2
(
CDCl ): d=45.7, 40.5 ppm (d, JPP =40.9 Hz); MS (ESI, positive mode):
3
2
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
[RuBr
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
(h -dppv)
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
(MeCOO)
A
T
N
T
E
U
G
+
m/z (%): 797.9 (100) [MꢀBr] ; elemental analysis calcd (%) for
C
1
43
H
2 2
40BrNO P RuS: C 58.84, H 4.59, N 1.60; found: C 58.68, H 4.97, N
Yield: 0.15 g (0.17 mmol, 87%); H NMR (CDCl
Ar-H), 7.96–7.78 (m, 3H; Ar-H), 7.57–7.47 (m, 3H; Ar-H, CH=CH,
CH ), 7.36–7.19 (m, 14H; Ar-H), 7.12–7.09 (m, 2H; Ar-H), 7.02–6.95 (m,
H; Ar-H, CH=CH), 6.93–6.87 (m, 2H; Ar-H), 6.83–6.79 (m, 1H; Ar-H),
.76 (d, 1H, JHH =16.4 Hz; CH
): d=229.0 (NCS), 186.1 (CH
CH=CH), 145.3 (JCP =24.9, 23.9 Hz; CH=CH), 144.3, 137.6, 136.1, 135.7,
3
): d=8.30–8.21 (m, 3H;
.38.
2
2
A
H
U
G
R
N
U
G
A
H
U
G
R
N
N
(h -dppp)
A
H
U
G
R
N
U
G
A
H
U
G
R
N
U
G
3
5
(
2
13
1
3
COO); C NMR
Yield: 0.11 g (0.12 mmol, 61%); H NMR (CDCl ): d=8.05–8.03 (m, 2H;
Ar-H), 7.69 (d, 1H; Ar-H), 7.45–7.08 (m, 21H; Ar-H), 6.82–6.60 (m, 6H;
Ar-H), 5.95 (d, 1H, JHH =15.8 Hz; CH ), 5.86 (d, 1H, J =15.8 Hz;
3
CDCl
3
2
2
HH
1
1
1
2
1
34.5, 134.4, 133.7, 133.3, 133.1, 133.0, 132.6, 132.4, 132.3, 132.2, 132.0,
31.8, 130.2, 129.8. 129.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8,
2 2 2 2 2 2 2
CH ), 3.00 (m, 1H; CH CH CH ), 2.84–2.77 (m, 2H; CH CH CH ), 2.46–
2.22 (m, 2H; CH CH CH ), 1.77 (m, 1H; CH CH CH ), 1.06 ppm (s, 3H;
2
2
2
2
2
2
1
3
27.0 (Ar-C), 124.7, 122.5, 119.2, 113.4 (Ar-Cmeta/ortho, N/S), 56.6 (CH
2
),
=
3 3 3
CH COO); C NMR (CDCl ): d=185.1 (CH COO), 144.3, 137.3, 136.8,
3
1
4.6 ppm (CH
3.6 Hz); MS (ESI, positive mode): m/z (%): 782.03 (100) [MꢀBr] ; ele-
36BrNO RuS: C 58.54, H 4.21, N
3
COO); P NMR (CDCl
3
): d=87.5, 84.9 ppm (d, JPP
136.2, 135.9, 134.9, 134.8, 134.3, 134.1, 134.0, 133.3, 130.2, 129.9, 129.1,
128.4, 127.9, 127.8, 127.7, 127.6, 127.4, 126.8, 126.7, 125.5, 125.0, 124.8,
123.3, 121.0, 113.6 (Ar-C), 56.2 (CH ), 27.4 (CH CH CH ), 27.2
+
mental analysis calcd (%) for C42
H
2 2
P
2
2
2
2
3
1
1
.62; found: C 58.11, H 4.15, N 1.60.
(CH CH CH ), 23.7 (CH COO), 21.4 ppm (CH CH CH ); P NMR
2
2
2
3
2
2
2
(
7
CDCl ): d=54.2, 14.6 ppm (m); MS (ESI, positive mode): m/z (%):
97.9 (100) [MꢀBr] .
3
2
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
[RuBr
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
(h -dppf)
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
(MeCOO)
A
H
U
G
R
N
N
(3-RBzTh)] (4)
+
1
Yield: 0.16 g (0.17 mmol, 83%); H NMR (CDCl
H), 7.84 (m, 2H; Ar-H), 7.61 (m, 2H; Ar-H), 7.29–7.27 (m, 7H; Ar-H),
.24–7.17 (m, 5H; Ar-H), 7.15–7.09 (m, 5H; Ar-H), 7.04–7.01 (m, 2H;
3
): d=8.02 (m, 2H; Ar-
General Procedure for the Transfer Hydrogenation Reaction
7
The transfer hydrogenation experiments were carried out by using stan-
dard Schlenk techniques. A mixture of an appropriate amount of 2–6
(1 mol%) and the ketone (1 mmol) was dissolved in 2-propanol (20 mL).
The solution was heated to 828C. The reaction commenced immediately
upon addition of 0.1m NaOtBu (1 mL). After ~24 h reflux, the mixture
2
Ar-H, CH
2
), 6.98–6.94 (m, 5H; Ar-H), 6.13 (d, 1H, JHH =16.4 Hz; CH
2
),
5
3
(
.08 (s, 1H; Cp-H), 4.79 (m, 2H; Cp-H), 4.46 (m, 2H; Cp-H), 4.36 (m,
H; Cp-H), 1.14 ppm (s, 3H; CH
CP =14.0, 13.0 Hz; NCS), 186.6 (CH
1
3
3
COO); C NMR (CDCl
3
): d=230.2
J
3
COO), 145.0, 139.6, 139.2, 138.0,
1
1
36.4, 136.1, 135.8, 134.8, 134.5, 134.4, 134.3, 134.2, 134.1, 133.6, 133.5,
29.3, 128.9, 128.7, 128.1, 127.6, 127.2, 127.1, 127.0, 126.8 (Ar-C), 124.8,
was passed through a small column of silica gel and eluted with Et
The crude product was collected for GC-mass chromatography analysis.
2
O.
Chem. Asian J. 2011, 6, 1485 – 1491
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.chemasianj.org
1489