Qian, Zong & Fang
NOTE
Continued
Yieldb/%
temperature (110 ℃) for 24 h. The reaction mixture was
allowed to reach room temperature and then diluted
with dichloromethane (10 mL). The slurry was filtered,
and filter cake was washed with 10 mL of dichloro-
methane. The solvent was removed in vacuo, and the
residue was purified by column chromatography on sil-
ica gel to afford the desired product (2-naphthyl phe-
nylether). 2-Naphthyl phenylether: 1H NMR (400 MHz,
CDCl3) δ: 7.17—7.25 (m, 3H), 7.35—7.38 (m, 1H),
7.43—7.55 (m, 5H), 7.78 (d, J=8 Hz, 1H), 7.90—7.91
(m, 2H); 13C NMR (100 MHz, CDCl3) δ: 109.4, 114.5,
115.3, 118.8, 120, 121.9, 122.5, 123.1, 125.1, 125.2,
125.5, 129.7, 150.4, 152.5.[9]
Aryl
Phenol
Entry
Product
halide (Alcohol)
25e
26e
80
90
27e
28e
88
73
85
Acknowledgement
29e
We are grateful to Yancheng Teachers University for
the financial support (Nos. 6106053058, 620610C448).
a
Unless otherwise stated, general reaction conditions: 1.5 mmol
of phenol, 1.0 mmol of ArX, 2.0 mmol of K3PO4, 0.5 mL of an-
hydrous DMF under Ar atmosphere for 24 h. Isolated yield.
c Reaction time of 48 h. d 1 mL benzyl alcohol as solvent instead
References
b
[1] For reviews, see: (a) Lindley, J. Tetrahedron 1984, 40, 1433; (b)
Theil, F. Angew. Chem., Int. Ed. 1999, 38, 2345; (c) Sawyer, J. S.
Tetrahedron 2000, 56, 5045; (d) Thomas, A. W.; Ley, S. V. Angew.
Chem., Int. Ed. 2003, 42, 5400; (e) Kunz, K.; Scholz, U.; Ganzer, D.
Synlett 2003, 15, 2428; (f) Beletskaya, I. P.; Cheprakov, A. V. Co-
ord. Chem. Rev. 2004, 248, 2337; (g) Monnier, F.; Taillefer, M.
Angew. Chem., Int. Ed. 2008, 47, 3096.
[2] For selected examples of medicinally important diaryl ethers, see: (a)
Jung, M. E.; Rohloff, J. C. J. Org. Chem. 1985, 50, 4909; (b) Singh,
S. B.; Pettit, G. R. J. Org. Chem. 1990, 55, 2797; (c) Deshpande, V.
E.; Gohkhale, N. J. Tetrahedron Lett. 1992, 33, 4213; (d) Evans, D.
A.; DeViries, K. M. In Glycopeptide Antibiotics, Drugs and the
Pharmaceutical Sciences, Ed.: Nagarajan, R., Marcel Decker, New
York, 1994, pp. 63—104; (e) Zenitani, S.; Tashiro, S.; Shindo, K.;
Nagai, K.; Suzuki, K.; Imoto, M. J. Antibiot. 2003, 56, 617; (f) Cris-
tau, P.; Vors, J.-P.; Zhu, J. Tetrahedron 2003, 59, 7859.
of DMF. e At 130 ℃.
Conclusions
In conclusion, methenamine was found to be an effi-
cient, inexpensive and facile ligand for the CuX-
catalyzed O-arylation of phenols with aryl iodides or
bromides. The present protocol is applicable to a variety
of phenols and aryl iodides containing electron-
withdrawing, electron-donating, and sterically demand-
ing substrate combinations under mild conditions. The
further study on design and application of new ligands
in copper based Ullmann-type coupling reaction is cur-
rently ongoing.
[3] For selected examples of Pd-catalyzed C—O coupling reactions, see:
(a) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109; (b)
Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1996,
118, 10333; (c) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am.
Chem. Soc. 1997, 119, 3395; (d) Aranyos, A.; Old, D. W.; Kiyomori,
A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc.
1999, 121, 4369; (e) Mann, G.; Incarvito, C.; Rheigold, A. L.; Hart-
wig, J. F. J. Am. Chem. Soc. 1999, 121, 3224; (f) Kataoka, N.;
Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67,
5553; (g) Prim, D.; Campagne, J.-M.; Joseph, D.; Andrioletti, B.
Tetrahedron 2002, 58, 2041; (h) Vorogushin, A. V.; Huang, X.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 8146; (i) Burgos, C.
H.; Barder, T. E.; Huang, X.; Buchwald, S. L. Angew. Chem., Int. Ed.
2006, 45, 4321.
Experimental
All the reactions were carried out in reaction tube
under argon atmosphere. Reaction temperatures were
controlled by temperature modulator; thin-layer chro-
matography (TLC) was performed using silica gel 60
F254 precoated plates (0.25 mm) and visualized by UV
fluorescence lamp. 1H NMR and 13C NMR spectra were
recorded on a 400 MHz instrument. Spectra were re-
ported relative to Me4Si (δ 0.0) or residual CDCl3 (δ
7.26). 13C NMR were reported relative to CHCl3 (δ
77.16). High resolution mass spectra (HRMS) were re-
corded on mass spectrometer.
[4] Ullmann, F. Ber. Dtsch. Chem Ges. 1903, 36, 2382.
[5] For selected examples of Cu-catalyzed C—O coupling reactions, see:
(a) Marcoux, J.-F.; Doye, S.; Buchwald, S. L. J. Am. Chem. Soc.
1997, 119, 10539; (b) Fagan, P. J.; Hauptman, E.; Shapiro, R.;
Casalnuovo, A. J. Am. Chem. Soc. 2000, 122, 5043; (c) Buck, E.;
Song, Z. J.; Tschaen, D.; Dormer, P. G.; Volante, R. P.; Reider, P. J.
Org. Lett. 2002, 4, 1623; (d) Ma, D.; Cai, Q.; Zhang, H. Org. Lett.
2003, 5, 3799; (e) Cai, Q.; Zou, B.; Ma, D. Angew. Chem., Int. Ed.
2006, 45, 1276; (f) Cai, Q.; He, G.; Ma, D. J. Org. Chem. 2006, 71,
5268; (g) Ouali, A.; Spindler, J. F.; Cristau, H.-J.; Taillefer, M. Adv.
Synth. Catal. 2006, 348, 499; (h) Cristau, H. J.; Cellier, P. P.;
Hamada, S.; Spindler, J. F.; Tailefer, M. Org. Lett. 2004, 6, 913; (i)
Typical representative experimental procedure
Methenamine (7.5 mol%), CuI (5 mol%), 2-naphthol
(1.5 mmol, 216 mg) and K3PO4 (425 mg, 2.0 mmol)
were added to a screw-capped Schlenk tube under argon.
The tube was then evacuated and backfilled with argon
(three cycles). Iodobenzene (1 mmol, 0.11 mL) and dry
DMF (0.5 mL) were added by syringe at room tem-
perature. The reaction mixture was stirred at needed
202
© 2012 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2012, 30, 199—203