DABCO An Efficient Catalyst for Pseudo Multi-component Reaction
Letters in Organic Chemistry, 2017, Vol. 14, No. 6 407
Entry d, Table 2: Pale yellow solid; Mp: 210-212oC;
FT-IR-ATR (νmax, cm -1): 3419, 3334, 3225, 2936, 2866,
2214, 1647, 1599, 1446, 1392, 1341, 1270, 1207, 1159, 1100,
7.01 (d, 2H, J=9 Hz, ArH), 7.37-7.42 (dd, 1H, J= 3,3 Hz,
ArH) ppm; 13C-NMR (75 MHz, CDCl3): 24.96(C5), 28.30
(C6), 30.41(C7), 31.96(C8), 39.28(C11), 52.95(C4), 55.30
(C-OMe), 87.74(C9), 111.10(C3), 111.79(CN), 114.84(CN),
115.87 (CN), 127.23(C’3, C’5), 130.04(C’2, C’6), 130.17
(C’1, C’4), 133.04(C1), 141.46(C10), 160.62(C2) ppm; MS
(EI): 344, 315, 287, 185, 147, 121 m/z; CHN analysis calcd
for C21H20N4O: 73.23 (C), 5.85 (H), 16.27 (N), 4.65 (O);
Found 72.89 (C), 5.81 (H), 15.98 (N), 5.32 (O).
1
1041, 958, 918, 852, 803, 733, 606; H-NMR (300 MHz,
DMSO-d6): δ 0.85-0.97 (q, 1H, J= 9, 12 Hz, C5H), 1.48-1.72
(m, 3H, C5H, C6H), 2.08-2.23 (m, 2H, C7H), 2.77-2.84 (t,
1H, J= 9Hz, C10H), 3.41-3.45 (d, 1H, J= 12Hz, C4H), 3.76
(s, 3H, -OMe), 3.77 (s, 3H,-OMe ), 3.80 (s, 3H, -OMe), 5.73
(s, 1H, C8H), 6.83-6.87 (d,2H, J= 12Hz, C’2, C’6), 7.31 (s,
2H, -NH2) ppm; 13C-NMR (75 MHz, DMSO-d6): δ 21.41
(C5), 25.33(C6), 27.34(C7), 34.52(C10), 43.41(C-OMe),
51.63 (C-OMe), 56.57(C4), 60.54(C3), 82.11(C8), 104.75
(CN), 110.76 (CN), 112.86(CN), 113.32(C1), 116.58 (C’6),
120.92 (C’2), 129.31 (C’5), 130.59(C’4), 138.42(C’2),
143.99 (C9), 152.96 (C’1), 153.55(C2) ppm; MS (EI): 262,
247, 219, 188, 161 m/z; CHN analysis calcd for C22H22N4O3:
67.68 (C), 5.68 (H), 14.35 (N), 12.29 (O); Found 67.56 (C),
5.68 (H), 14.25 (N), 12.51 (O).
Entry h, Table 2: White solid; Mp: 188-190oC; FT-IR-
ATR (νmax, cm -1): 3632, 3446, 3394, 3342, 2205, 1637, 1620,
1592, 1575, 1523, 1490, 1473, 1440, 1412, 1402, 1017, 958,
1
918, 852, 803, 733, 606; H-NMR (300 MHz, CDCl3): δ
1.32-1.55 (m, 4H, C5H, C6H), 1.75-1.85 (m, 4H, C7H,
C8H), 2.27-2.43 (m, 2H, C4H, C11H), 4.98 (s, 2H, -NH2),
6.24-6.27 (t, 1H,J= 6 Hz, C9H), 7.44-7.50 (m, 4H, ArH)
ppm; 13C-NMR (75 MHz, CDCl3): 24.86(C5), 28.26(C6), 30.31
(C7), 32.02(C8), 39.16(C11), 42.38(C4), 52.94(C3), 87.74
(C9), 110.72(CN), 111.39(CN), 115.61(CN), 129.78(C’3,
C’5), 130.21(C’2, C’6), 130.51(C’4), 132.38(C’1), 133.85
(C1), 135.91(C10), 141.02(C2) ppm; MS (EI): 348, 294,
223, 160, 127, 125 m/z; CHN analysis calcd for C20H17N4Cl:
68.86 (C), 4.91 (H), 16.06 (N); Found 68.56 (C), 4.91 (H),
15.51 (N).
Entry e, Table 2: Pale yellow solid; Mp: 216-220oC; FT-
IR-ATR (νmax, cm -1): 3417, 3339, 3259, 2972, 2940, 2862,
2833, 2249, 2215, 1651, 1600, 1488, 1449, 1394, 1351, 1339,
1269, 1210, 1175, 1154, 1041, 959, 919, 883, 851, 804, 73,
1
697; H-NMR (300 MHz, DMSO-d6): δ 0.92-0.96 (m, 2H,
C5H), 1.03-1.08 (t, 1H, J= 6Hz, C5H), 1.37-1.68 (m, 7H,
C5H, C6H, C7H), 2.16 (m, 5H, C7H, C10H), 2.50-2.67 (m,
3H, C4, C10), 5.73 (s, 1H, C8H), 7.32 (s, 4H, -NH2), 7.51-
7.77 (m, 4H, ArH) ppm; 13C-NMR (75 MHz, DMSO-d6): δ
18.95 (C5), 21.47(C6), 25.25(C7), 34.72(C10), 43.22(C4),
50.48 (C3), 82.19(C8), 112.66(CN), 113.41(CN), 116.56 (CN),
120.91(C1), 125.25(C’3), 127.75(C’4), 128.86(C’2), 129.21
(C’6), 129.59(C’5), 133.32(C9), 135.77(C’1), 143.72(C2)
ppm; MS (EI): 522, 495, 468, 378, 376, 209, 167, 140, 104,
91, 81, 55 m/z; CHN analysis calcd for C32H26N8: 73.54 (C),
5.01 (H), 21.44 (N); Found 68.03 (C), 5.39 (H), 18.87 (N).
Entry j, Table 2: Pale yellow solid; Mp: 225-228oC; FT-
IR-ATR (νmax, cm -1): 3422, 3308, 3200, 2932, 2911, 2850,
2208, 1644, 1580, 1491, 1471, 1450, 1387, 1357, 1306, 1280,
1206, 1181, 1159, 1039, 1034, 1004, 924, 837, 814, 758, 715,
701, 678; 1H-NMR (300 MHz, DMSO-d6): δ 1.33 (s, 1H, C5H),
1.50 (s, 4H, C5H, C6H, C7H), 1.64 (s, 3H, C7H, C8H), 1.81-
1.85 (m, 1H, C8H), 2.22-2.30 (m, 1H, C9H), 2.37-2.42 (m,
1H, C9H), 3.72 (s, 2H, -NH2), 4.38 (s, 1H, C10H), 7.35 (s,
3H, ArH), 7.39 (s, 2H, ArH) ppm; 13C-NMR (75 MHz,
DMSO-d6): 25.34(C5), 26.73(C6), 27.99(C7), 29.11(C8), 29.62
(C9), 31.21(C12), 42.26(C4), 51.26(C3), 79.69(C10), 112.01
(CN), 114.83(CN), 117.35(CN), 124.56(C’3, C’5), 126.85
(C’2, C’6), 128.98(C’4), 129.18(C’1), 129.63(C1), 134.43
(C10), 144.40(C2) ppm; MS (EI): 328, 300, 271, 246, 212,
144, 115, 91 m/z; CHN analysis calcd for C21H20N4: 76.80 (C),
6.14 (H), 17.06 (N); Found 76.39 (C), 6.15 (H), 16.60 (N).
Entry f, Table 2: Yellow solid; Mp: 202-205oC; FT-IR-
ATR (νmax, cm -1): 3409, 3331, 3245, 3045, 3010, 2959, 2935,
2910, 2857, 2842, 2215, 1651, 1613, 1586, 1514, 1474, 1451,
1442, 1394, 1307, 1280, 1256, 1179, 1152, 1119, 1028, 981,
840, 821, 802, 779, 764, 751, 700, 658; 1H-NMR (300 MHz,
DMSO-d6): δ 1.13-1.26 (m, 1H,C5H), 1.87-1.93 (q, 1H, J=
6, 6 Hz, C5H), 2.25-2.38 (m, 2H, C6H), 3.24 (s, 2H, C4H,
C9H), 3.78 (s, 3H, C’4-OMe), 5.51 (s, 1H,C7H), 6.91-6.93
(d, 2H, J= 6 Hz, ArH), 7.24 (s, 2H,-NH2), 7.36-7.39 (d, 2H,
J= 9 Hz, ArH) ppm; 13C-NMR (75 MHz, DMSO-d6): 29.73
(C5), 31.38(C6), 43.24(C9), 44.29(C4), 51.94(C3), 55.38 (C-
OMe), 112.33(C7), 112.74(CN), 114.26(CN), 116.05 (CN),
116.55 (C’2, C’6), 120.41(C’3, C’5), 126.25(C’4), 130.87
(C1), 135.17(C8), 146.00(C’1), 160.21(C2)ppm; MS (EI):
316, 289, 121, 91 m/z; CHN analysis calcd for C19H16N4O:
72.14 (C), 5.10 (H), 17.71 (N), 5.06 (O); Found 71.44 (C),
5.05 (H), 16.71 (N), 6.98 (O).
Entry g, Table 2: White solid; Mp: 208-210oC; FT-IR-
ATR (νmax, cm -1): 3442, 3353, 3260, 3222, 3012, 2914, 2843,
2200, 1638, 1611, 1592, 1514, 1443, 1399, 1311, 1285, 1249,
1185, 1121, 1030, 965, 923, 839, 808, 786, 750, 717, 695,
673; 1H-NMR (300 MHz, CDCl3): δ 1.28-1.63 (m, 4H, C5H,
C6H), 1.73-1.89 (m, 3H,C7H), 2.28-2.40 (m, 2H, C8H),
3.09-3.10 (d, 1H, J= 3Hz, C4H, C11H), 3.86 (s, 3H, C’-OMe),
4.94 (s, 1H, -NH2), 6.21-6.25 (d, 1H, J= 6 Hz, C9H), 6.98-
CONCLUSION
In conclusion, we disclosed DABCO catalyzed multi-
component reaction of aldehyde, cyclic ketone and malono-
nitrile furnished corresponding tetrahydronaphthalenes, tet-
rahydroindalenes, hexahydrobenzo[7]annulenes and hexahy-
drobenzo[8]annulenes, with a high level of complexity. No-
tably, this methodology provides facile access to various
multi-functional compounds. The operational simplicity and
good yields, combined with step and atom-economic aspects,
clean reactions yielded pure products, hence no requirement
of tedious chromatographic purification makes this synthetic
strategy highly attractive and promising approach from view-
point of sustainable and practical chemistry.
CONSENT FOR PUBLICATION
Not applicable.