Mendeleev Commun., 2019, 29, 47–49
Table 2 Comparison of empirical and calculated values of EHOMO/ELUMO
and Egel for pyrimidines 7–10.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2019.01.014.
EHOMO
/
ELUMO
/
Egel/
EHOMO
/
ELUMO
/
Eg/
Compound
eVa
eVa
eVb
eVc
eVc
eVc
References
7
8
–5.37
–5.36
–5.40
–5.35
ox
–3.54
–3.54
–3.59
–3.56
1.83 –5.51
1.82 –5.51
1.81 –5.56
1.79 –5.55
–1.94
–1.93
–2.00
–1.99
3.57
3.58
3.56
3.56
1 (a) M. Kaur,Y.-H. Ahn, K. Choi, M. J. Cho and D. H. Choi, Org. Biomol.
Chem., 2015, 13, 7149; (b) M. Kaur, M. J. Cho and D. H. Choi, Dyes
Pigm., 2016, 125, 1.
2 (a) S. Achelle, I. Nouira, B. Pfaffinger, Y. Ramondenc, N. Plé and
J. Rodríguez-López, J. Org. Chem., 2009, 74, 3711; (b) B. Schmidt,
D. Kieser, A. Boländer, J. Herms, R. Heyny-Von Haussen and J. Gu,
US Patent 0287700 A1, 2013.
9
10
aEHOMO = –(E
– EFc vs. Ag/AgCl + 4.80). ELUMO = –(E
–
onset vs. Ag/AgCl
red
onset vs. Ag/AgCl
– EFc vs. Ag/AgCl + 4.80).19 b Egel = EHOMO – ELUMO. c Calculated values.
3 S. Kato, Y. Yamada, H. Hiyoshi, K. Umezu and Y. Nakamura, J. Org.
Chem., 2015, 80, 9076.
4 E. V. Verbitskiy, E. M. Dinastiya, A. A. Baranova, K. O. Khokhlov,
R. D. Chuvashov, Yu. A. Yakovleva, N. I. Makarova, E. V. Vetrova,
A. V. Metelitsa, P. A. Slepukhin, G. L. Rusinov, O. N. Chupakhin and
V. N. Charushin, Dyes Pigm., 2018, 159, 35.
5 (a) S. Achelle, J. Rodríguez-López, N. Cabon and F. Robin-le Guen,
RSC Adv., 2015, 5, 107396; (b) R. Komatsu, H. Sasabe and J. Kido,
J. Photonics Energy, 2018, 8, 032108-1.
6 S. S. Gunathilake, P. Huang, M. P. Bhatt, E. A. Rainbolt, M. C. Stefan
and M. C. Biewer, RSC Adv., 2014, 4, 41997.
7 (a) H. Kusama and H. Arakawa, J. Photochem. Photobiol. A, 2003,
160, 171; (b) E. V. Verbitskiy, E. M. Cheprakova, J. O. Subbotina,
A. V. Schepochkin, P. A. Slepukhin, G. L. Rusinov, V. N. Charushin,
O. N. Chupakhin, N. I. Makarova, A. V. Metelitsa and V. I. Minkin, Dyes
Pigm., 2014, 100, 201.
are somewhat deeper than those of pyrimidines 8 and 10
(Alk = n-hexyl), while the LUMO levels remained the same
for all the investigated compounds. The values of electro-
chemical band gaps energy (Egel), which was determined as the
difference between HOMO and LUMO energy values, lay within
1.78–1.83 eV interval. Therefore, all the prepared compounds
have the sufficiently deep-lying HOMO levels, whose values are
significantly below the air oxidation threshold (ca. –5.27 eV)
(see Table 2). This fact provides a good air stability to their
molecules and increases the open circuit voltage (Voc) of a solar
cell made with the use of such compounds.20
According to the calculations, the values HOMO/LUMO
energies fall in the interval from –5.51 to –5.56 eV (HOMO) and
from –1.93 to –2.0 eV (LUMO). HOMO values correlate with
the experimentally obtained data, while the values of LUMO
level have a systematic significant deviation (Figure 2).21
In summary, a series of novel Y-shaped 2,4,6-trisubstituted
pyrimidines containing O- or S-alkyl groups of different lengths
has been synthesized in good yields (60–68%), which allows us to
propose this method as the preparative one for obtaining this type
of compounds. All compounds are photo- and electrochemically
stable. The fluorescence of obtained films has appeared to be
inherent for 2-ethyloxy- and 2-ethylthio-substituted pyrimidines
(~600 nm), but in the case of 2-hexyloxy- and 2-hexylthio-substi-
tuted pyrimidines the aggregation-caused quenching of fluore-
scence was clearly observed. Single crystal X-ray analysis of
pyrimidine containing hexylthio group has confirmed that this
compound forms stacks consisting of dimers resulted from the
van der Waals intermolecular attraction between hexylthio groups.
The calculated absorption maxima and HOMO values are in good
agreement with experimental values acquired for THF solutions.
The optical characteristics of obtained compounds make them
the promising candidates for further investigations as potential
materials for organic electronics devices.
8 S. Achelle, J. Rodríguez-López and F. Robin-le Guen, ChemistrySelect,
2018, 3, 1852.
9 (a) A. Yu. Bushueva, E. V. Shklyaeva and G. G. Abashev, Mendeleev
Commun., 2009, 19, 329; (b) G. Abashev, E. Sosnin, E. Shklyaeva,
T. Ustalova, I. Osorgina and V. Romanova, Phys. Status Solidi C, 2012,
9, 1127; (c) E. A. Komissarova, E. Sosnin, E. V. Shklyaeva, I. V. Osorgina
and G. G. Abashev, Arkivoc, 2017, (iii), 105; (d) E. A. Komissarova,
I. V. Lunegov, E. V. Shklyaeva and G. G. Abashev, Chem. Heterocycl.
Compd., 2016, 52, 257 (Khim. Geterotsikl. Soedin., 2016, 52, 257);
(e) E. A. Komissarova, I. V. Lunegov, O. A. Mayorova, E. V. Shklyaeva
and G. G. Abashev, Butlerovskie Soobshcheniya, 2015, 42 (4), 55 (in
Russian).
10 A. Facchetti, A. Abbotto, L. Beverina, M. E. van der Boom, P. Dutta,
G. Evmenenko, T. J. Marks and G. A. Pagani, Chem. Mater., 2002, 14,
4996.
11 G. Vlád and I. T. Horváth, J. Org. Chem., 2002, 67, 6550.
12 R. R. Hunt, J. F. W. McOmie and E. R. Sayer, J. Chem. Soc., 1959, 527.
13 T. Nagasawa, K. Kuroiwa and K. Narita, US Patent 3904612 A, 1972.
14 D. Chen, C. Zhong, X. Dong, Z. Liu and J. Qin, J. Mater. Chem., 2012,
22, 4343.
15 K. Brunner, M. M. De Kok-Van Breemen, B. M. W. Langeveld, N. M.
M. Kiggen, J. J. A. M. Bastiaansen, J. W. Hofstraat, H. F. Boerner and
H. F. M. Schoo, US Patent 2006/0073357 A1, 2006.
16 J. J. Vanden Eynde, L. Pascal, Y. Van Haverbeke and P. Dubois, Synth.
Commun., 2001, 31, 3167.
17 J. B. Birks, Photophysics of Aromatic Molecules, Wiley, NewYork, 1970.
18 S. Sadki, P. Schottland, N. Brodie and G. Sabouraud, Chem. Soc. Rev.,
2000, 29, 283.
19 (a) J.-L. Bredas, Mater. Horiz., 2014, 1, 17; (b) J. Pommerehne,
H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler, M. Porsch and J. Daub,
Adv. Mater., 1995, 7, 551.
The instrumental studies were performed using the equip-
ment purchased at the expense of the Program of National
Research Universities of Russian Federation (program for Perm
State University).
20 Y. Li, L. Xue, H. Li, Z. Li, B. Xu, S. Wen and W. Tian, Macromolecules,
2009, 42, 4491.
21 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon,
J. H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T. L. Windus,
M. Dupuis and J. A. Montgomery, Jr., J. Comput. Chem., 1993, 14, 1347.
–1.5
–1.93
–1.94
–1.99
–2.00
LUMO (calc)
LUMO (exp)
–2.5
–3.5
–4.5
–5.5
–3.54
–3.54
–3.56
–3.59
–5.35
–5.55
–5.36
–5.51
–5.37
–5.51
HOMO (exp)
HOMO (calc)
–5.40
–5.56
7
8
9
10
Figure 2 Frontier molecular orbital energy level diagram of pyrimidines
7–10.
Received: 12th July 2018; Com. 18/5641
– 49 –