Organometallics
Article
1
29
13
119
1
29
1
Hz, J( Si− C) = 58 Hz). Sn{ H} NMR (111.92 MHz, CDCl ): δ
Me CSn).
Si{ H} NMR (59.63 MHz, CDCl ): δ 1.8
3
3
3
2
29
117/119
2
29
117/119
119
1
22 (80%).
( J( Si−
Sn) = 46 Hz, J( Si−
Sn) = 56/60 Hz). Sn-
1
1
1
119
13
Compound 3′. H NMR (400.13 MHz, CDCl ): δ 0.21 (s, 6H,
{ H} NMR (111.92 MHz, CDCl ): δ 34 ( J( Sn− CCH ) = 198
3
3
2
2
1
117/119
1
119
13
2
119
29
Me Si), 0.35 (s, 2H, J( H−
Sn) = 62.8/65.0 Hz, SiCH Sn), 1.15
Hz, J( Sn− Ct-Bu) = 428 Hz, J( Sn− Si) = 48 Hz,
2 119 29
2
2
3
1
1
3
1
117/119
(
d, 6H, J( H− H) = 6.3 Hz, Me CH), 1.33 (s, 18H, J( H−
Sn)
J( Sn− Si) = 60 Hz). Electrospray MS: m/z (%), positive mode,
+ +
2
3
1
1
=
81.8/85.3 Hz, t-Bu Sn), 4.01 (m, 1H, J( H− H) = 6.0 Hz, CHO).
calcd for [6 + H] (C H O Si Sn ) 643.1630, found 643.2; calcd for
22 53 2 2 2
2
1
3
1
1
13
117/119
13 29
+
+
C{ H} NMR (100.63 MHz, CDCl ): δ 0.0 ( J( C−
Sn) =
[Me (HO)SiCH (t-Bu )Sn] (C H OSiSn ) 323.0854, found 323.0.
Anal. Calcd for C22
Found: C, 41.1; H, 8.2.
Synthesis of cyclo-[{Me
Elemental iodine (0.76 g, 3.00 mmol) was added in portions at 0
°C to a solution of compound 4 (1.47 g, 3.00 mmol) in CH Cl (50
mL). After the addition was complete, the mixture was warmed to
room temperature and stirred overnight, before the solvent and
iodobenzene were removed in vacuo to give [Me (i-PrO)SiCH ]-
3
2
2
2
11 27
1
13
29
1
1
03/107 Hz, J( C− Si) = 58 Hz, SiCH Sn), 1.2 ( J( C− Si) = 58
H
52
O
2
Si
Sn
2
2
(642.20 g/mol): C, 41.14; H, 8.16.
2
3
13
117/119
Hz, J( C−
Sn) = 9 Hz, Me Si), 25.8 (Me CH), 30.0 (Me C),
Sn) = 361/378 Hz, Me CSn), 65.1 (CHO).
2
2
3
1
13
117/119
3
4.6 ( J( C−
2
N(CH
2
)
3
}PhSnOSi(Me
2
)CH
2
]
2
(7).
3
2
1
9
1
1
29
13
Si{ H} NMR (59.63 MHz, CDCl ): δ 14.71 ( J( Si− C) = 58 Hz).
3
19
1
Sn{ H} NMR (111.92 MHz, CDCl ): δ 128 (20%). Electrospray
2
2
3
+
MS: m/z (%), positive mode, calcd for [Me (i-PrO)SiCH (t-Bu )Sn]
2
2
2
+
(
C H OSiSn ) 365.1324, found 365.1.
14 33
2
2
Synthesis of {Me (i-PrO)SiCH }{Me N(CH ) }SnPh (4). A
Grignard reagent prepared from Me N(CH ) Cl (610 mg, 5.00
2
2
2
2 3
2
PhRSnI (R = Me N(CH ) , 1.40 g, 86%) as a yellowish viscous oil that
was not purified further. Its Si{ H} NMR spectrum (59.63 MHz,
2
2 3
2
2
3
29
1
mmol) and magnesium turnings (134 mg, 5.50 mmol) in THF (10
mL) was added at room temperature to a solution of 2 (2.12 g, 4.00
mmol) in THF (15 mL), and the mixture was stirred overnight. The
solvent was evaporated, and hexane (50 mL) was added. The mixture
obtained was filtered under inert conditions. The solvent of the filtrate
was evaporated in vacuo to give compound 4 (1.63 g, 83%) as a
colorless oil that was not purified further.
2
29
117/119
CDCl ) showed a major resonance at δ 9.4 ( J( Si−
Sn) = 20
Hz) and a minor resonance at δ 19.4. A Sn{ H} NMR spectrum
111.92 MHz, CDCl ) of the same solution revealed two signals of
3
119
1
(
3
different integral ratios at δ 3 (87%) and −4 (13%), respectively.
A solution of sodium hydroxide (0.55 g, 13.75 mmol) in water (40
mL) and ethanol (10 mL) was added to a solution of [Me (i-
]PhRSnI (1.40 g, 2.60 mmol) in CH
mixture was stirred for 3 days at room temperature before CH
ethanol were evaporated in vacuo. The residue was extracted with
CH Cl . The organic phase was separated, and the solvent was
evaporated to give compound 7 (0.89 g, 92%) as a light yellowish
2
1
PrO)SiCH
2
2
Cl
2
(25 mL), and the
H NMR (300.13 MHz, CDCl ): δ 0.06 (s, 6H, Me Si), 0.32 (s, 2H,
3
2
2
1
117/119
3
1
1
2
Cl and
2
J( H−
Sn) = 73.6 Hz, SiCH Sn), 1.11 (d, 6H, J( H− H) = 5.8
2
Hz, Me CH), 1.31 (t, 2H, CH CH Sn), 1.81 (m, 2H, CH CH CH ),
2
2
2
2
2
2
2
2
2
7
(
.17 (s, 6H, Me N), 2.28 (t, 2H, CH N), 3.98 (m, 1H, CHO), 7.34−
2
2
29 1
.63 (m, 10H, Ar H). Si{ H} NMR (59.63 MHz, CDCl ): δ 15.1
3
solid. Recrystallization from CHCl afforded colorless single crystals
2
29
117/119
119
1
3
J( Si−
Sn) = 18 Hz). Sn{ H} NMR (111.92 MHz, CDCl ):
3
with mp 142.5−144.5 °C suitable for X-ray diffraction analysis.
δ −62.
1
H NMR (400.25 MHz, C D ): δ 0.14 (complex pattern, 4H), 0.29
6
6
Synthesis of cyclo-[Ph SnOSi(Me )CH ] (5). A solution of
2
2
2 2
(
s, 3H, SiCH ), 0.32 (s, 3H, SiCH ), 0.47 (s, 3H, SiCH ), 0.51 (s, 3H,
3 3 3
sodium hydroxide (0.90 g, 22.6 mmol) in water (50 mL) and ethanol
10 mL) was added to a solution of 2 (1.50 g, 2.82 mmol) in CH Cl
25 mL), and the mixture was stirred for 3 days at room temperature
before CH Cl and ethanol were evaporated in vacuo. The residue was
extracted with CH Cl . The organic phase was separated, and the
solvent was evaporated. The residue was recrystallized from a solution
in CH Cl /hexane to give 0.98 g (96%) of 5 as colorless crystals with
SiCH ), 1.44 (s, 12H, NCH ) 1.22−2.00 (complex patterns, 12H,
3
3
(
(
2 2
SnCH CH CH N), 7.21−7.32 (complex pattern, 6H, Ph-H , ), 7.66
2
2
2
m p
(
complex pattern, 1H, Ph-H ), 7.68 (complex pattern, 1H, Ph-H ),
o
o
2
2
7.75 (complex pattern, 1H, Ph-H ), 7.77 (complex pattern, 1H, Ph-
o
13
1
1
13
117/119
2
2
Ho). C{ H} NMR (150.94 MHz, C D ): δ 3.68 ( J( C−
Sn) =
7
8
1
13
117/119
3
61/379 Hz, SiCH Sn), 3.89 ( J( C−
Sn) = 365/382 Hz,
2
2
2
SiCH Sn), 5.40 (MeSi), 5.70 (MeSi), 5.75 (MeSi), 6.08 (MeSi), 14.83
2
mp 167−169 °C suitable for X-ray diffraction analysis.
1
13
117/119
(
J( C−
117/119
Sn)
= 528/554 Hz, CH CH Sn), 14.97
2 2
1
H NMR (300.13 MHz, CDCl ): δ 0.15 (s, 12H, Me Si), 0.58 (s,
1
13
3
2
( J( C−
Sn) = 531/567 Hz, CH CH Sn), 22.65 (CH CH CH ),
2
2
2
2
2
2
1
117/119
Sn) = 73.6/76.5 Hz, SiCH Sn), 7.37−7.78 (m, 20H,
1 1 13 29
4
H, J( H−
2
22.76 (CH CH CH ), 46.02 (Me N), 46.05 (Me N), 61.49 (CH N),
2 2 2 2 2 2
13
Ar H). C{ H} NMR (75.48 MHz, CDCl ): δ 3.3 ( J( C− Si) = 84
3
61.55 (CH N), 128.05 (C ), 128.20 (C ), 128.21 (C ), 135.82 (C ),
2 m p p o
1
13
117/119
1
13
29
Hz, J( C−
Sn) = 326/341 Hz, SiCH Sn), 4.5 ( J( C− Si) =
1
13
117/119
2
135.94 (C ), 147.58 ( J( C−
Sn) = 592/619 Hz, C ), 146.7
o
i
3
13
117/119
3
13
117/119
5
5
(
9 Hz, J( C−
Sn) = 18 Hz, Me Si), 128.4 ( J( C−
Sn) =
1
13
117/119
29
29
1
2
( J( C−
Sn) = 586/614 Hz, C ). Si{ H} NMR (79.52, CDCl ):
δ 1.4 ( J( Si−
i
3
4
13
117/119
2
117/119
2
29
117/119
8 Hz, C ), 129.4 ( J( C−
Sn) = 12 Hz, C ), 135.9
m
p
Sn) = 39/47 Hz), 1.0 ( J( Si−
Sn) = 40/48
2
13
117/119
1
13
117/119
Hz), 4.7. 29Si{ H} NMR (79.52 MHz, C D ): δ −0.4, −0.9. Sn{ H}
1
119
1
J( C−
Sn) = 46 Hz, C ), 142.1 ( J( C−
Sn) = 572/
o
7
8
2
9
1
2 119 29
5
99 Hz, C ). Si{ H} NMR (59.63 MHz, CDCl ): δ 8.6
i
3
NMR (149.26 MHz, C D ): T = 298 K, δ −62.6 (45%, J( Sn− Si)
7
8
2
29
117/119
2
29
117/119
1
29
13
2
119
29
(
J( Si−
Sn) = 33 Hz, J( Si−
Sn) = 54 Hz, J( Si− C)
=
46 Hz), −62.8 (52%, J( Sn− Si) = 46 Hz), 70.4 (3%); T = 333
1
19
1
119 1
=
(
87 Hz).
Sn{ H} NMR (111.92 MHz, CDCl ): δ −31
K, δ −54.2 (45%), −54.4 (52%), −64.0 (3%).
Sn{ H} NMR
3
1J( Sn− CH ) = 341 Hz, J( Sn− Ci) = 598 Hz). Electrospray
119
13
1
119
13
2
119
29
2
(111.92 MHz, CDCl ): δ −55 (50%, J( Sn− Si) = 48 Hz), −53
3
+
+
2
2 119 29
MS: m/z (%), positive mode, calcd for [5 + H] (C H O Si Sn )
(43%, J( Sn − Si) = 48 Hz), −66 (4%), 4 (3%). Electrospray MS:
30
37
2
2
+
+
7
23.0380, found 723.1. Anal. Calcd for C H O Si Sn (722.20 g/
m/z (%), positive mode, calcd for [7 + H] (C H N O Si Sn )
28 51 2 2 2 2
30
36
2
2
2
mol): C, 49.89; H, 5.02. Found: C, 49.8; H, 5.1.
Synthesis of cyclo-[t-Bu SnOSi(Me )CH ] (6). A solution of
741.1536, found 741.2; calcd for [{Me (OH)SiCH }{Me N(CH ) }-
2 2 2 2 3
+
+
2
2
2 2
PhSn + 4H O] (C H NO SiSn ) 444.1230, found 444.1. Anal.
2
14 34
5
sodium hydroxide (0.32 g, 8.0 mmol) in water (15 mL) and ethanol
10 mL) was added to a solution of the 3/3′ mixture (0.396 g, 1.0
Calcd for C H N O Si Sn (740.266 g/mol): C, 45.43; H, 6.81; N,
3.78. Found: C, 45.1; H, 7.2; N, 4.1.
28 50 2 2 2 2
(
+
mmol based on [Me (i-PrO)SiCH Sn(t-Bu) ] ) in CH Cl (15 mL)
Synthesis of cyclo-[Me2SiCH2(Ph) SnO-t-Bu SnO] (8). A
2
2
2
2
2
2
2
and the mixture was stirred for 3 days at room temperature before
CH Cl and ethanol were evaporated. The residue was extracted with
mixture of di-tert-butyltin oxide (100 mg, 0.40 mmol) and 5 (145
mg, 0.20 mmol) in CH Cl (3 mL) was stirred for 10 min at room
2
2
2
2
CH Cl . The organic phase was separated, and the solvent was
temperature. Then the solvent was evaporated, giving a white solid
2
2
evaporated before the residue was recrystallized from a solution in
with mp 145−149 °C.
1
CH Cl /hexane to give 0.29 g (90%) of 6 as colorless crystals with mp
H NMR (400.13 MHz, CDCl ): δ 0.18 (s, 6H, Me Si), 0.56 (s, 2H,
2
2
3
2
2
3
1
117/119
1
00.5−102.5 °C suitable for X-ray diffraction analysis.
J( H−
Sn) = 71.3/73.8 Hz, SiCH Sn), 1.36 (s, 18H,
2
1
H NMR (400.13 MHz, CDCl ): δ −0.10 (s, 4H, J( H−117/119Sn)
2
1
1
117/119
1
3
J( H−
Sn) = 91.4/95.9 Hz, Me3CSn), 7.37−7.73 (m, 10H, Ar
H). 13C{ H} NMR (100.63 MHz, CDCl ): δ 3.0 ( J( C−
1
13
117/119
Sn) =
Sn)
=
55.0 Hz, SiCH Sn), 0.12 (s, 12H, Me Si), 1.2 (s, 36H,
2
2
3
3
1
117/119
13
1
1
13
29
3
13
117/119
J( H−
Sn) = 71.8/75.3 Hz, Me CSn). C{ H} NMR (100.63
282/295 Hz, SiCH2Sn), 4.4 ( J( C− Si) = 59 Hz, J( C−
3
1
13
117/119
29
1
13
29
MHz, CDCl ): δ −0.8 ( J( C−
Sn) = 190/198 Hz, J( C− Si)
= 17 Hz, Me Si), 29.8 (Me3C), 38.4 (Me3CSn), 128.4
3
2
1
13
3
13
117/119
3
13
117/119
2
4
13
117/119
1
=
54 Hz, SiCH Sn), 5.4 ( J( C− Si) = 59 Hz, J( C−
Sn) = 15
( J( C−
Sn) = 57 Hz, Cm), 129.3 ( J( C−
Sn) = 13 Hz,
2
1
13
117/119
13
117/119
13
117
Hz, Me Si), 30.0 (Me C), 31.5 ( J( C−
Sn) = 409/428 Hz,
Cp), 135.7 ( J( C−
Sn) = 47 Hz, Co), 142.5 ( J( C− Sn) =
2
3
I
Organometallics XXXX, XXX, XXX−XXX