O
Notes and References
O
HO
7
U
† E-mail: chrys@area.bo.cnr.it
‡ E-mail: gimisis@area.bo.cnr.it
ROO
HO
§ Selected data for 5: white solid, mp (pentane) 179–181 °C. dH(200 MHz;
C6D6) 20.06, 20.04 (3 H each, s, SiMe), 20.01 (6 H, s, 2 3 SiMe), 0.86,
0.91 (9 H each, s, SiBut), 1.27 (9 H, s, But), 2.26 (1 H, dd, J 13.8, 7.4, 2Aa-
H), 3.46 (1 H, dd, J 12.3, 2.4, 5Aa-H), 3.62 (2 H, m, 4A, 5Ab-H), 3.75 (1 H,
dd, J 13.8, 8.8, 2Ab-H), 4.41 (1 H, ddd, J 8.8, 7.4, 3A-H), 5.73 (1 H, d, J 8.2,
5-H), 8.15 (1 H, d, J 8.2, 6-H), 9.29 (1 H, bs, NH); dC(50 MHz; C6D6)
25.63, 25.57, 25.02, 24.42 (each CH3), 18.0, 18.4 (each C), 25.78, 25.79,
29.0 (each 3 3 CH3), 42.5 (CH2), 43.5 (C), 60.2 (CH2), 68.5, 87.0 (each
CH), 97.5 (C), 102.0, 139.0 (each CH), 150.5, 163.2, 201.2 (each C).
10
O
O
O
HO
U
HO
9
H218O
O
+
U
1 DNA and RNA Cleavers and Chemotherapy of Cancer and Viral
Diseases, ed. B. Meunier, Kluwer, Dordrecht, 1996; for a review, see G.
Pratviel, J. Bernadou and B. Meunier, Angew. Chem., Int. Ed. Engl.,
1995, 34, 746.
2 For a recent review, see C. Chatgilialoglu and T. Gimisis, in Free
Radicals in Biology and Environment, ed. F. Minisci, Kluwer,
Dordrecht, 1997, pp. 281–292.
O
HO
8
HO
11
Scheme 2 Proposed mechanism for the formation of 2-deoxyribonol-
actone
3 For some recent work, see X. Zeng, Z. Xi, L. S. Kappen, W. Tan and I.
H. Goldberg, Biochemistry, 1995, 34, 12435; Y.-J. Xu, Z. Xi, Y.- S.
Zhen and I. H. Goldberg, Biochemistry, 1995, 34, 12451; M. Pitie´, J.
Bernadou and B. Meunier, J. Am. Chem. Soc., 1995, 117, 2935; H.
Sugiyama, K. Fujimoto and I. Saito, J. Am. Chem. Soc., 1995, 117,
2945; H. Sugiyama, K. Fujimoto, I. Saito, E. Kawashima, T. Sekine and
Y. Ishido, Tetrahedron Lett., 1996, 37, 1805; G. P. Cook and M. M.
Greenberg, J. Am. Chem. Soc., 1996, 118, 10025; T. Melvin, S. W.
Botchway, A. W. Parker and P. O’Neil, J. Am. Chem. Soc., 1996, 118,
10031; M. M. Meijler, O. Zelenko and A. S. Sigman, J. Am. Chem. Soc.,
1997, 119, 1135; H. Sugiyama, K. Fujimoto and I. Saito, Tetrahedron
Lett., 1997, 38, 8057; O. Zelenko, J. Gallagher and A. S. Sigman,
Angew. Chem., Int. Ed. Engl., 1997, 36, 2776.
4 T. Gimisis and C. Chatgilialoglu, J. Org. Chem., 1996, 61, 1908; T.
Gimisis, C. Castellari and C. Chatgilialoglu, Chem. Commun., 1997,
2089.
5 I. H. Goldberg, Acc. Chem. Res., 1991, 24, 191; B. K. Goodman and M.
M. Greenberg, J. Org. Chem., 1996, 61, 2.
6 E. G. Hole, W. H. Nelson, E. Sagstuen and D. M. Close, Radiat. Res.,
1992, 129, 119; D. M. Close, W. H. Nelson, E. Sagstuen and E. O. Hole,
Radiat. Res., 1994, 137, 300; K. Miaskiewicz and R. Osman, J. Am.
Chem. Soc., 1994, 116, 232; A.-O. Colson and M. D. Sevilla, J. Phys.
Chem., 1995, 99, 3867.
7 C. Chatgilialoglu, T. Gimisis, M. Guerra, C. Ferreri, C. J. Emanuel, J. H.
Horner, M. Newcomb, M. Lucarini and G. F. Pedulli, Tetrahedron Lett.,
in the press.
H218O. For this reason, the above experiment was performed in
H218O (95 atom% 18O) as solvent. After work-up, the protected
2-deoxyribonolactone was analyzed by GC–MS. Inspection of
the mass spectrum of the isotopic cluster of [M 2 57]+, shown
in Fig. 1(b), indicates the presence of coeluting isotopomers 7
and 8. Analysis of this isotopic cluster revealed that the product
of interest contains 65 and 35% oxygen-16 and oxygen-18,
respectively. A control experiment showed that the product
lactone 2 does not exchange oxygen with the solvent under the
conditions employed.
The mechanism we envisage for the formation of the
18O-labelled 2-deoxyribonolactone is outlined in Scheme 2.
Reaction of C-1A radical 1 with O2 gives the peroxyl radical 9.
Laser flash photolysis studies showed that rate constant for
oxygen trapping of the C-1A radical is about 1 3 109 m21 s21 7
.
The peroxyl radical 9 decays either via a bimolecular reaction
with another peroxyl radical to generate the alkoxyl radical 10
or via a unimolecular path (heterolytic cleavage) to generate the
carbocation 11 and superoxide radical anion.15a The heterolytic
cleavage of peroxides or alternatively the reaction of electron-
rich carbon-centered radicals to give superoxide and carboca-
tions is not without precedent.15 The cationic intermediate 11
was trapped by H218O, thus demonstrating the partition between
the two channels.
8 T. Gimisis, G. Ialongo, M. Zamboni and C. Chatgilialoglu, Tetrahedron
Lett., 1995, 36, 6781; T. Gimisis, G. Ialongo and C. Chatgilialoglu,
Tetrahedron, 1998, 54, 573.
9 M. M. Greenberg, D. J. Yoo and B. K. Goodman, Nucleosides
Nucleotides, 1997, 16, 33.
An important consequence of the mechanism in Scheme 2 is
that the C-1A peroxyl radical generated on DNA, in the absence
of good hydrogen donors, should mainly undergo heterolytic
cleavage since the probability that two macromolecular peroxyl
radicals meet is low. This finding accentuates the different
chemical reactivity exhibited by the C-1A radical species when
compared with the one observed in the more studied C-5A and
C-4A positions,1 a reactivity which is mainly due to the presence
of the two a-heteroatoms present in the anomeric position.
Further work on the reactions of compounds 3 and 4 with a
variety of electrophiles and on the kinetics of radical reactions
associated with the C-1A position is in progress.
10 A. Holy, Nucleic Acids Res., 1974, 1, 289.
11 K. Haraguchi, Y. Itoh, H. Tanaka, K. Yamaguchi and T. Miyasaka,
Tetrahedron Lett., 1993, 34, 6913; Y. Itoh, K. Haraguchi, H. Tanaka, E.
Gen and T. Miyasaka, J. Org. Chem., 1995, 60, 656.
12 C. Chatgilialoglu, Acc. Chem. Res., 1992, 25, 118; C. Chatgilialoglu,
Chem Rev., 1995, 95, 1229.
13 The reduction using Bu3SnH was reported to give 77% yield, see Y.
Yoshimura, F. Kano, S. Miyazaki, N. Ashida, S. Sakata, K. Haraguchi,
Y. Itoh, H. Tanaka and T. Miyasaka, Nucleosides Nucleotides, 1996, 15,
305.
14 For compounds 2 and 7, see F. J. Lopez-Herrera, M. Valpuesta-
Fernandez and S. Garcia-Claros, Tetrahedron, 1990, 46, 7165; A. P.
Kozikowski and A. K. Ghosh, J. Org. Chem., 1984, 49, 2762.
15 (a) C. von Sonntag and H.-P. Schuchmann, Angew. Chem., Int. Ed.
Engl., 1991, 30, 1229; (b) K. U. Ingold, T. Paul, M. J. Young and L.
Doiron, J. Am. Chem. Soc., 1997, 119, 12364.
We are grateful to the European Commission for a ‘Marie
Curie’ post-doctoral fellowship to T. G., to NATO for a
Collaborative Research Grant, and to Drs C. Ferreri and M.
Lucarini for helpful discussions.
Received in Glasgow, UK, 25th March 1998; 8/02375A
1250
Chem. Commun., 1998