sites with concomitant changes in the photophysical proper-
ties of a lumophore by modulation of a Photoinduced
Electron Transfer (PET) mechanism. We have chosen to
thiourea moieties that can form hydrogen bonding complexes
with bis-anions. To the best of our knowledge, these
chemosensors are the first examples of charge neutral
fluorescent PET sensors that show ideal PET behavior for
bis-anions.
8
demonstrate such anion recognition of biologically relevant
-
-
2 4
anions such as H PO and AcO in DMSO by employing
simple thiourea and urea recognition sites, connected to an
anthracene fluorescent moiety by a covalent spacer. Here
the anion recognition takes place through hydrogen bonding
Sensors 2 and 3 (Scheme 1) can be described as being
designed as “receptor-spacer-fluorophore-spacer-recep-
9
between the thiourea hydrogens and the anion. Such
chemosensors should in principle show ideal PET behavior
upon anion recognition, i.e., only the quantum yield and the
lifetime of the excited-state emission should be modulated
Scheme 1. The Synthesis of PET Anion Chemosensors 2 and
3
10
upon anion recognition. In this letter we demonstrate such
PET fluorescent sensing of anions flanked with two binding
1
1
sites. Such fluorescence sensing is both exceptional and
of great physiological relevance since many dicarboxylates
are components of various metabolic processes, and pyro-
phosphate is the product of ATP hydrolysis under cellular
1
2
conditions. However, it has up to now been difficult to
4
,5
achieve without the use of structurally complicated hosts.
With this in mind we developed 2 and 3, which have two
(6) Liao, J. H.; Chen, C. T.; Fang, J. M. Org. Lett. 2002, 4, 561. Fabbrizzi,
L.; Licchelli, M.; Mancin, F.; Pizzeghello, M.; Rabaioli, G.; Taglietti, A.;
Tecilla, P.; Tonellato, U. Chem. Eur. J. 2002, 8, 94. Sasaki S.; Citterio D.;
Ozawa S.; Suzuki, K. J. Chem. Soc., Perkin Trans. 2 2001, 2309. Lee, D.
H.; Lee, K. H.; Hong, J. I. Org. Lett. 2001, 3, 5. Wiskur S. L.; Ait-Haddou,
H.; Lavigne, J. J.; Anslyn, E. V. Acc. Chem. Res. 2001, 34, 963. Kruger, P.
E.; Mackie P. R.; Nieuwenhuysen, M. J. Chem. Soc., Perkin Trans. 2 2001,
1
079. Wiskur, S. L.; Best, M. D.; Lavigne, J. J.; Schneider S. E.; Perreault,
D. M.; Monahan, M. K.; Anslyn, E. V. J. Chem. Soc., Perkin Trans. 2
2
4
001, 315. Choi, K.; Hamilton, A. D. Angew. Chem., Int. Ed. Engl. 2001,
0, 3912. Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. Tetrahedron
Lett. 2001, 42, 2805. Anzenbacher., P., Jr.; Jurs ´ı kov a´ , K.; Sessler, J. L. J.
Am. Chem. Soc. 2000, 122, 9350. Kubo, Y.; Tsukahara, M.; Ishihara S.;
Tokita, S. Chem. Commun. 2000, 653. Blake, C. B.; Andrioletti, B.; Try,
A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem. Soc. 1999, 121, 10438.
Miyaji, P. H.; Anzenbacher, J. L., Jr.; Sessler, E. R.; Bleasdale, P. A.; Gale
Chem. Commun. 1999, 1723. Snowden, T. S.; Anslyn, E. V. Curr. Op.
Chem. Biol. 1999, 3, 740. Beer, P. D.; Timoshenko, V.; Maestri, M.;
Passaniti P.; Balzani, V. Chem. Commun. 1999, 1755. Dickens, R. S.;
Gunnlaugsson, T.; Parker D.; Peacock, R. D. Chem. Commun. 1998, 1643.
Cooper, C. R.; Spencer N.; James, T. D. Chem. Commun. 1998, 1365. Kr a´ l,
V.; Andrievsky A.; Sessler, J. L. J. Am. Chem. Soc. 1995, 117, 2954.
1
3
tor” conjugates where the anion recognition takes place at
the two-thiourea moieties. They are easily synthesized, and
simple modification to the thiourea moiety (by incorporating
aromatic or aliphatic electron withdrawing groups) can be
used to “tune” the anion sensitivity and selectivity, as the
(7) Gunnlaugsson, T.; Nieuwenhuyzen, M.; Richard L.; Thoss, V. J.
4
Chem. Soc., Perkin Trans. 2 2002, 141. Gunnlaugsson, T.; Mac Donaill,
D. A.; Parker, D. J. Am. Chem. Soc. 2001, 123, 12866. Gunnlaugsson T.;
Davis, A. P.; Glynn, M. Chem. Commun. 2001, 2556. Gunnlaugsson, T.
Tetrahedron Lett. 2001, 42, 8901. Gunnlaugsson, T.; Nieuwenhuyzen, M.;
Richard L.; Thoss, V. Tetrahedron Lett. 2001, 42, 4725. Gunnlaugsson,
T.; Mac Donaill, D. A.; Parker, D. Chem. Commun. 2000, 93.
acidity of the thiourea hydrogens is modulated. 2 and 3 were
synthesized in good yield (Scheme 1) from 9,10-diamino-
methylanthracene (1). The synthesis of this starting material
has been described previously in the literature, using Gabriel
synthesis. However, due to the insolubility of the bis-
phthalimide intermediate the yield of 1 was found to be
extremely poor. With this in mind we synthesized 1 using
an alternative method that involved the initial synthesis of
,10-bis-bromomethylanthracene in one step in 75% yield.
Accordingly, 1 was synthesized from this bis-bromide
intermediate with hexamethylenetetramine in anhydrous
1
4
(
8) Rurack, K. Spectrochim. Acta, Part A 2001, 57, 2161. Amendola,
V.; Fabbrizzi, L.; Mangano, C.; Pallavicini, P. Acc. Chem. Res. 2001, 34,
88. deSilva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J.
M.; McCoy, C. P.; Rademacher J. T.; Rice, T. E. Chem. ReV. 1997, 97,
515.
9) Linton, B. R.; Goodman, M. S.; Fan, E.; van Arman, S. A.; Hamilton,
4
1
(
15
9
A. D. J. Org. Chem. 2001, 66, 7313. B u¨ hlmann, P.; Nishizawa, S.; Xiao
K. P.; Umezawa, Y. Tetrahedron 1997, 53, 1647. Kelly R. R.; Kim, M. H.
J. Am. Chem. Soc. 1994, 116, 7072. Fan, E.; van Arman, S. A.; Kincaid,
S.; Hamilton, A. D. J. Am. Chem. Soc. 1993, 115, 369. Dixon, R. P.; Geib,
S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1992, 114, 365. Garcia-Tellado,
F.; Goswami, S.; Chang, S.-K.; Geib, S. J.; Hamilton, A. D. J. Am. Chem.
Soc. 1990, 112, 7393.
16
3
CHCl under inert atmosphere. This method gave 1 in 85%
yield as a crude product that could be used without further
purification. The two sensors 2 and 3 were subsequently
(
10) Nishizawa, S.; Kaneda, H.; Uchida T.; Teramae, N. J. Chem. Soc.,
Perkin Trans. 2 1998, 2325.
11) Mei M.; Wu, S. New J. Chem. 2001, 25, 471. Watanabe, S.; Higashi,
(
(13) deSilva, A. P.; Gunaratne H. Q. N.; McCoy, C. P. Nature 1993,
364, 42.
(14) Fyles, T. M.; Suresh, V. V. Can. J. Chem. 1994, 72, 1246.
(15) Altava, B.; Burgett, M. I.; Escuder; Luis, S. V.; Garc ´ı a-Espa n˜ a, E.;
Mu n˜ oz, M. C. Tetrahedron 1997, 53, 2629.
(16) Alpha, B.; Anklam, E.; Deschenaux, R.; Lehn, J. M.; Pietraskiewicz,
M. HelV. Chim. Acta 1988, 71, 1043.
N.; Kobayashi, M.; Hamanaka, K.; Takata, Y.; Yoshida, K. Tetrahedron
Lett. 2000, 41, 4583. Nishizawa, S.; Kato, Y.; Teramae, N. J. Am. Chem.
Soc. 1999, 121, 9463. Vance, D. H.; Czarnick, A. W. J. Am. Chem. Soc.
1
994, 116, 9397.
12) Mathews, C. P.; van Hold, K. E. Biochemistry; The Benjamin/
Cummings Publishing Company, Inc.: Redwood City, CA, 1990.
(
2450
Org. Lett., Vol. 4, No. 15, 2002