4
38
FROMENTIN, COUSTARD, AND GUISNET
SCHEME 4. Intramolecular formation of [D3]-1-acetyl-7-methoxynaphthalene from [D3]-1-acyl-2-methoxynaphthalene.
molecules having their aromatic ring plans roughly parallel
to each other (Scheme 3). In this conformation, acyl
transfer from the deuterated �-complex to the nondeuter-
ated 2-MN may occur easily because of entropic factors:
7. Spagnol, M., Gilbert, L., Jacquot, R., Guillot, H., Tirel, P. J., and
Le Govic, A. M., in “Heterogeneous Catalysis and Fine Chemicals
IV” (H. U. Blaser, A. Baiker, and R. Prins, Eds.), Studies Surface
Science Catalysis, Vol. 108, p. 92. Elsevier, Amsterdam, 1996.
8
9
. Spagnol, M., Gilbert, L., and Alby, D., Ind. Chem. Libr. 8, 29 (1996).
. Rohan, D., Canaff, C., Fromentin, E., and Guisnet, M., J. Catal. 177,
296 (1998).
(
favorable conformation) and of energetic (both reactants
and products have nearly the same formation energies).
The intermolecular acyl transfer occurs preferably on
the most reactive C1 carbon of 2-methoxynaphthalene
to form deuterated 2-MN and the C1 �-complex of non-
deuterated 1-acetyl-2-methoxynaphthalene (I). This last
10. Harvey, G., Vogt, A., Kouwenhoven, H. W., and Prins, R., in “Proceed-
ings from the 9th International Zeolite Conference, Montreal, 1992”
(
R. van Ballmoos, J. B. Higgins, and M. M. J. Treachy, Eds.), p. 383.
Butterworth/Heineman, Stoneham, MA, 1993.
11. Freese, U., Heinrich, F., and Roessner, F., Catal. Today 49, 237 (1999).
�
-complex may then lose a proton to afford nondeuterated 12. Neves, I., Jayat, F., Magnoux, P., Perot, G., Ribeiro, F. R.,
Gubelmann, M., and Guisnet, M., J. Mol. Catal. 93, 169 (1994).
3. Guisnet, M., Lukyanov, D. B., Jayat, F., Magnoux, P., and Neves, I.,
Ind. Eng. Chem. Res. 34, 1624 (1995).
4. Subba Rao, Y. V., Kulkarni, S. J., Subrahmanyam, M., and Rama Rao,
A. V., Appl. Catal. A Gen. 133, L1 (1995).
I (Scheme 3). This intermolecular acyl transfer may also
occur in the other activated positions, leading to isomers
II and III.
1
1
On the other hand, the formation of the minor isomer
III was shown to occur partly through an intramolecular 15. Hoefnagel, A. J., and van Bekkum, H., Appl. Catal. A Gen. 97, 87
(
1993).
process. This intramolecular process may be proposed as
resulting from an acyl shift between carbons 1 and 8 of the
1
6. Gunnewegh, E. A., Downing, R. S., and van Bekkum, H., in “Zeo-
lites: A Refined Tool for Designing Catalytic Sites” (L. Bonneviot and
S. Kaliaguine, Eds.), Studies Surface Science Catalysis, Vol. 97, p. 447.
Elsevier, Amsterdam, 1995.
�
-complex resulting from IPSO protonation on the C1 car-
bon. The �-complex obtained leads by proton elimination
to the deuterated III isomer (Scheme 4). A cyclic transition 17. Harvey, G., and M a¨ der, G., Collect. Czech. Chem. Commun. 57, 862
(
1992).
state can be postulated.
1
8. Harvey, G., Binder, G., and Prins, R., in “Catalysis by Microporous
Materials” (H. K. Beyer, H. G. Karge, I. Kiricsi, and J. B. Nagy, Eds.),
Studies Surface Science Catalysis, Vol. 94, p. 397. Elsevier,
Amsterdam, 1995.
The same mechanism could explain a transformation of
III into II. However, as only a small amount of III is ob-
tained, this secondary transformation plays, most likely, a
limited role in the production of II, as furthermore con- 19. Gunnewegh, E. A., Gopie, S. S., and van Bekkum, H., J. Mol. Catal.
A Chem. 106, 151 (1996).
0. Choudary, B. M., Sateesh, M., Kantam, M. L., and Ram Prasad, K. V.,
Appl. Catal. A Gen. 171, 155 (1998).
1. Coutanceau, C., Da Silva, J. M., Alvarez, M. F., Ribeiro, F. R., and
Guisnet, M., J. Chim. Phys. 94, 765 (1997).
22. Guisnet, M., Ayrault, P., Coutanceau, C., Alvarez, M. F., and Datka,
J., J. Chem. Soc. Faraday Trans. 93, 1661 (1997).
firmed by the primary formation of II. On the other hand,
2
2
a direct acyl shift between the carbons 1 and 6 of the
-complex is most unlikely because of the large distance
�
between these carbons, which explains that intramolecular
isomerisation of I into II, if it exists, is very limited.
REFERENCES
23. Sommai, P.-A., Kamuzi, O., Masahiro, M., Satoru, M., and Masakatsu,
N., J. Chem. Soc. Perkin Trans. 1 13, 1703 (1994).
1
2
. Olah, G. A., “Friedel-Craftsand Related Reactions.” Wiley, NewYork, 24. Al-Ka’bi, J., Farooqi, J. A., Gore, P. H., Nassar, A. M. G., Saad, E. F.,
1
964.
Short, E. L., and Waters, D. N., J. Chem. Soc. Perkin Trans. 2 943
(1988).
25. Espeel, P. H. J., Vercruysse, K. A., Debaerdemaker, M., and Jacobs,
P. A., in “Zeolites and Microporous Materials: State of the Art 1994”
(J. Weitkamp, H. G. Karge, H. Pfeifer, and W. H o¨ lderich.), Studies
Surface Science Catalysis, Vol. 84, p. 1457. Elsevier, Amsterdam, 1994.
. Kouvenhoven, H. W., and van Bekkum, H., in “Handbook of Het-
erogeneous Catalysis” (G. Ertl, H. Kn o¨ zinger, and J. Weitkamp, Eds.),
Vol. 5, p. 2358. Wiley, New York, 1997.
3
. van Bekkum, H., Hoefnagel, A. J., van Koten, M. A.,
Gunnewegh, E. A., Vogt, A. H. G., and Kouwenhoven, H. W.,
in “Zeolites and Microporous Crystals” (T. Hattori and T. Yashima, 26. Gilbert, L., and Mercier, C., in “Heterogeneous Catalysis and Fine
Eds.), Studies Surface Science Catalysis, Vol. 83, p. 379. Elsevier,
Amsterdam, 1994.
. Chiche, B., Finiels, A., Gauthier, C., Geneste, P., Graille, J., and Pioch,
D., J. Org. Chem. 51, 2128 (1986).
Chemicals III” (M. Guisnet, J. Barbier, J. Barrault, C. Bouchoule,
D. Duprez, G. P e´ rot, and C. Montassier, Eds.), Studies Surface Science
Catalysis, Vol. 78, p. 51. Elsevier, Amsterdam, 1993.
27. Jayat, F., Sabater Picot, M. J., and Guisnet, M., Catal. Lett. 41, 181
(1996).
4
5
. P e´ rot, G., and Guisnet, M., J. Mol. Catal. 61, 173 (1990).
6
. Corma, A., Climent, M. J., Garcia, H., and Primo, J. Appl. Catal. 49, 28. Fromentin, E., and Guisnet, M., unpublished results.
09 (1989).
29. Traynham, J. Chem. Educ. 60, 937 (1983).
1