3
Eq. 4). The delineated observation could be ascribed to the in situ
trimerization of PhB(OH)2, which could release a small amount
of water to facilitate the reaction. It is worth mentioning that the
necessity of water was also noticed by Molander and co-worker
in the reaction between aryltrifluoroborates and sodium nitrite.19
However, water in Molander’s reaction was proposed to allow
the formation of tricoordinate boron species from
aryltrifluoroborates, which in turn facilitates the nitrosation.
Financial support by the Loker Hydrocarbon Research
Institute is gratefully acknowledged.
References
1.
2.
3.
(a) Zuman, P.; Shah, B. Chem. Rev. 1994, 94, 1621-1641. (b)
Yamamoto, H.; Momiyama N. Chem. Commun. 2005, 3514–3525.
Recent review: Adam, W.; Krebs, O. Chem. Rev. 2003, 103, 4131–
4146.
Recent reviews: (a) Guillena, G.; Ramon, D. J. Tetrahedron:
Asymmetry 2006, 17, 1465–1492; (b) Yamamoto, H.; Momiyama, N.
Chem. Commun. 2005, 28, 3514–3525; (c) Merino, P.; Tejero, T.
Angew. Chem. 2004, 116, 3055–3058; Angew. Chem. Int. Ed. Engl.
2004, 43, 2995–2997.
4.
(a) Tibiletti, F.; Simonetti, M.; Nicholas, K. M.; Palmisano, G.;
Parravicini, M.; Imbesi, F.; Tollari, S.; Penoni, A. Tetrahedron 2010,
66, 1280-1288; (b) Murru, S.; Gallo, A. A.; Srivastava, R. S. Eur. J.
Org. Chem. 2011, 11, 2035-2038;
5.
6.
(a) Priewisch, B.; Rück-Braun, K. J. Org. Chem. 2005, 70, 2350–
2352; (b) Goelitz, P.; Meijere, A. Angew. Chem. 1977, 89, 892–893;
Angew. Chem. Intl. Ed. 1977, 16, 854-855.
(a) F. Kopp, I. Sapountzis, P. Knochel. Synlett 2003, 6, 885–887;
(b) Goldman, J. Tetrahedron 1973, 29, 3833-43; (c) Forrester, A. R.;
Hepburn, S. P. J. Chem. Soc. C. 1971, 20, 3322-3328; (d) Aston, J.
G.; Menard, D. F. J. Am. Chem. Soc. 1935, 57, 1920–1924.
[4+2] Reactions: (a) Yamamoto, H.; Kawasaki, M. Bull. Chem. Soc.
Jpn. 2007, 80, 595-607; (b) Waldmann, H. Synthesis 1994, 6, 535-
551; [3+3] Reactions: (c) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J.
Am. Chem. Soc. 133, 20728-20731; [2+2] Reactions: (d) Staudinger,
H.; Jelagin, S. Ber. Dtsch. Chem. Ges. 1911, 44, 365 – 374; (e) Wang,
T.; Huang, X.-L.; Ye. Org. Biomol. Chem. 2010, 8, 5007–5011; (f)
Chatterjee, I., Jana, C. K., Steinmetz, M., Grimme, S.; Studer, A. Adv.
Synth. Catal. 2010, 352, 945–948; (g) Dochnahl, M.; Fu, G. C.
Angew. Chem. 2009, 121, 2427–2429; Angew. Chem. Int. Ed. 2009,
48, 2391–2393; (h) Bodnar, B. S.; Miller, M. J. Angew. Chem. Int. Ed.
2011, 50, 5630-5647.
7.
8.
Oxidation reaction to nitro compounds: (a) Bonner, T. G.; Hancock,
R. A. J. Chem. Soc. B 1970, 3, 519–524; (b) Ibne-Rasa, K. M.; Lauro,
C. G.; Edwards, J. O. J. Am. Chem. Soc. 1963, 85, 1165–1167.
Reduction to amines: (a) Dutta, D.K.; Konwar, D.; Sandhu, J. S. J.
Chem. Res., Synop. 1994, 10, 388-389; (b) Feuer, H.; Braunstein, D.
M. J.Org. Chem. 1969, 34, 2024-2026.
Scheme 3. Mechanistic elucidation of the formation of
nitroarenes.
9.
Since nitrobenzene was obtained as a major product even
under argon atmosphere, dioxygen (O2) could be excluded as a
potential oxidant responsible for the formation of nitrobenzene
(Scheme 3, Eq. 2-4). This hypothesis was made further evident
by the fact that nitrosobenzene was not oxidized in the presence
of TMSCl or NaNO2 under open-air conditions (Scheme 3, Eq. 5-
7). On the other hand, although nitrosobenzene was found to
convert to nitrobenzene with a mixture of TMSCl and NaNO2 in
the presence of air, such a conversion was not observed under
inert atmosphere (Scheme 3, Eq. 8 and 9). This result showed
10.
(a) Torssell, K. Tetrahedron 1970, 26, 2759-2773, and references
cited therein; (b) Forrester, A. R.; Henderson, J.; Reid, K.
Tetrahedron Lett. 1983, 24, 5547-5550; (c) Kaur, H. Free Radical
Res. 1996, 24, 409−420 and references cited therein.
11.
(a) Bordoloi, A.; Halligudi, S. B. Adv. Synth. Catal. 2007, 349, 2085–
2088; (b) Sakaue, S.; Sakata, Y.; Nishiyama, Y.; Ishii, Y. Chem. Lett.
1992, 2, 289-292; (c) Burckard, P.; Fleury, J. P.; Weiss, F. Bull. Soc.
Chim. Fr. 1965, 10, 2730-2733.
12.
13.
Cameron, M.; Gowenlock, B. G.; Vasapollo, G. Chem. Soc. Rev.
1990, 19, 355-379.
Rice, W. G.; Schaeffer, C. A.; Graham, L.; Bu, M.; McDougal, J. S.;
Orloff, S. L.; Villinger, F.; Young, M.; Oroszlan, S.; Fesen, M. R.;
Pommier, Y., Mendeleyev, J.; Kun, E. Nature 1993, 361, 473-475.
(a) Sandler, S. R.; Karo, W. Organic Functional Group Preparations,
2nd ed.; Academic Press: Orlando, 1986; Vol. 2, Chapter 16; (b)
Williams, D. H. Nitrosation; Cambridge University Press: Cambridge,
1988; Chapter 2 and 3; (c) Touster, O., Org. React. 1953, 7, 327. (d)
Boyer, J. H. Methods of Formation of the Nitroso Group and Its
Reaction. In the Chemistry of the Nitro and Nitroso Groups, Part 1;
Feuer, H., Ed.; Interscience: New York, 1969; Chapter 5, 891-1016;
(e) Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W. Comprehensive
Functional Group Transformations; Pergamon Press: London, 1995.
Lee, J.; Chen, L.; West, H. A.; Richter-Addo, G. B., Chem. Rev. 2002,
102, 1019-1065.
that the oxidation of nitrosobenzene originated from
a
combination of TMSCl, NaNO2 and water which could
presumably lead to the formation of HNO2. As HNO2 can readily
undergo disproportionation to render HNO3 and NO,23 the in situ
oxidation of nitrosobenzene can be ascribed to the presence of
these two species.24 Noticeably, the in situ oxidation of
nitrosoarenes was also observed in the reaction between
aryltrifluoroborates and NO+BF4-, indicating the intrinsic lability
of nitrosoarenes under direct nitrosation reaction conditions.
14.
15.
In conclusion, we have demonstrated that the combination of
chlorotrimethylsilane-nitrite salt could be used as a viable system
for the ipso-nitrosation of electron-rich arylboronic acids.
Arylboronic acids bearing electron-withdrawing groups, although
undergo ipso-functionalization, generally lead to nitration
products instead of desired nitroso compounds. This observation
is similar to many other direct nitrosation reactions, in which
nitrosoarenes are in situ oxidized. Attempts to tackle this problem
are currently under investigation in our laboratory.
16.
17.
18.
Bosch, E.; Kochi, J. K., J. Org. Chem. 1994, 59, 5573-5586.
Hubig, S. M.; Kochi, J. K., J. Am. Chem. Soc. 2000, 122, 8279-8288.
Zyk, N. V.; Nesterov, E.E.; Khlobystov, A. N.; Zefirov, N.S., Russ.
Chem. Bull. 1999, 48, 506-509.
19.
20.
21.
G. A. Molander, L. N. Cavalcanti, J. Org. Chem. 2012, 77, 4402-
4413.
Prakash, G. K. S.; Panja, C.; Mathew, T.; Surampudi, V.; Petasis, N.
A.; Olah, G. A., Org. Lett. 2004, 6, 2205-2207.
(a) Lee, J. G.; Kwak, K. H.; Hwang, J. P., Tetrahedron Lett. 1990, 31,
6677-6680; (b) Baidya, M.; Yamamoto, H.; J. Am. Chem. Soc. 2011,
133, 13880-13882.
Acknowledgment