SYNTHESIS AND PROPERTIES OF HYDROXYL-CONTAINING IONIC LIQUIDS
145
spring was measured with an accuracy of ±0.02 mm
using a KM-8 cathetometer.
1-(6-Hydroxyhexyl)-2,3-dimethylimidazolium
bis(trifluoromethanesulfonyl)azanide (2). Yield
1
91%. H NMR spectrum, δ, ppm: 1.29 m (4H, CH2),
This study was performed under financial support
by the Russian Science Foundation (project no. 14-
19-00503).
1.39 m (2H, CH2), 1.70 m (2H, CH2), 2.57 s (3H,
2-CH3), 3.38 m (2H, CH2O), 3.74 s (3H, 1-CH3),
4.09 m (2H, CH2N), 4.35 br.s (1H, OH), 7.62 m (2H,
4-H, 5-H). 13C NMR spectrum, δC, ppm: 9.25, 25.32,
25.81, 29.55, 32.61, 34.85, 48.00, 61.01, 113.52,
117.78, 121.13, 122.04, 122.60, 126.31, 144.49.
Found, %: C 32.47; H 4.28; F 23.94; N 9.01; S 13.48.
C13H21F6N3O5S2. Calculated, %: C 32.70; H 4.43;
F 23.88; N 8.80; S 13.43.
REFERENCES
1. Shi, R. and Wang, Y., Sci. Rep., 2016, vol. 6, article
no. 19644.
2. Johnson, K.E., Interface, 2007, vol. 16, p. 38.
3. Wassercheid, P. and Welton, T., Ionic Liquids in
Synthesis, New York: Wiley-VCH, 2008, 2nd ed.
1-(2-Hydroxyethyl)-1-methylpyrrolidinium bis-
(trifluoromethanesulfonyl)azanide (3). Yield 87%.
1H NMR spectrum, δ, ppm: 2.08 m (4H, 3-H, 4-H),
3.04 s (3H, CH3), 3.42 m (2H, CH2O), 3.51 m (4H,
2-H, 5-H), 3.84 m (2H, CH2N), 5.27 br.s (1H, OH).
13C NMR spectrum, δC, ppm: 21.23, 48.38, 55.96,
64.74, 65.10, 113.52, 117.79, 122.05, 126.31. Found,
%: C 26.41; H 3.99; F 27.71; N 6.87; S 15.45.
C9H16F6N2O5S2. Calculated, %: C 26.34; H 3.93;
F 27.78; N 6.83; S 15.63.
4. Wasserscheid, P. and Joni, J., Handbook of Green
Chemistry: Ionic Liquids. Vol. 6: Green Solvents,
Wasserscheid, P., Ed., Wiley, 2010.
5. Hallett, J.P. and Welton, T., Chem. Rev., 2011, vol. 111,
p. 3508.
6. Parvulescu, V.I. and Hardacre, C., Chem. Rev., 2007,
vol. 107, p. 2615.
7. Tsuda, T. and Hussey, C.L., Electrochem. Soc. Interface,
Spring 2007, p. 42.
8. Singh, V.V., Nigam, A.K., Batra, A., Boopathi, M.,
Singh, B., and Vijayaraghavan, R., Int. J. Electrochem.,
2012, vol. 2012, article ID 165683.
9. Armand, M., Endres, F., MacFarlane, D., and Ohno, H.,
Nature Mater., 2009, vol. 8, p. 621.
10. Sowmiah, S., Srinivasadesikan, V., Tseng, M.-C., and
1-(2-Hydroxyethyl)pyridinium bis(trifluoro-
1
methanesulfonyl)azanide (4). Yield 92%. H NMR
spectrum, δ, ppm: 3.38 m (2H, CH2O), 4.67 m (2H,
CH2N), 5.26 br.s (1H, OH); 8.14 m (2H), 8.60 m (1H),
and 8.99 m (2H) (C5H5N). 13C NMR spectrum, δC,
ppm: 60.37, 63.85, 113.50, 117.75, 122.01, 126.27,
127.94, 145.25, 145.73. Found, %: C 26.59; H 2.44;
F 28.17; N 6.91; S 15.73. C9H10F6N2O5S2. Calculated,
%: C 26.74; H 2.49; F 28.19; N 6.93; S 15.86.
Chu, Y.-H., Molecules, 2009, vol. 14, p. 3780.
11. Ngo, H.L., LeCompte, K., Hargens, L., and Mc-
Ewen, A.B., Thermochim. Acta, 2000, vols. 357–358,
p. 97.
12. Kosmulski, M., Gustafsson, J., and Rosenholm, J.B.,
1
The H and 13C NMR spectra were measured on
Thermochim. Acta, 2004, vol. 412, p. 47.
a Bruker AM-300 spectrometer from solutions in
DMSO-d6 using tetramethylsilane as internal standard.
Thermogravimetric analysis was performed on a MOM
Derivatograph-C (Hungary) in an argon atmosphere at
a heating rate of 10 deg/min (sample weight ~20 mg).
The glass transition temperatures were determined by
differential scanning calorimetry with a Mettler-Toledo
DSC-822e instrument (temperature range –100 to
100°C; heating rate 10 deg/min, argon atmosphere).
The kinematic viscosities were measured using
an Ostwald viscometer (capillary diameter 1.2 mm);
the viscometer was calibrated at 25°C using ethylene
glycol (Aldrich, 99.8%, water content <0.01%) as
reference. The densities were determined with a 1-mL
pycnometer calibrated against distilled water. The
volatilities of ILs in a vacuum were determined with
a McBain quartz spring balance. Stretching of the
13. Del Sesto, R.E., McCleskey, T.M., Macomber, C.,
Ott, K.C., Koppisch, A.T., Baker, G.A., and Burrell, A.,
Thermochim. Acta, 2009, vol. 491, p. 118.
14. Tang, S., Baker, G.A., and Zhao, H., Chem. Soc. Rev.,
2012, vol. 41, p. 4030.
15. Wei, Z., Wei, X., Wang, X., Wang, Z., and Liu, J.,
J. Mater. Chem., 2011, vol. 21, p. 6875.
16. Solution Chemistry Research Progress, Bostrelli, D.V.,
Ed., New York: Nova Science, 2008.
17. Glukhov, L.M., Krasovskii, V.G., Chernikova, E.A.,
Kapustin, G.I., Kustov, L.M., and Koroteev, A.A., Russ.
J. Phys. Chem. A, 2015, vol. 89, p. 2204.
18. Chernikova, E.A., Glukhov, L.M., Krasovskii, V.G.,
Kustov, L.M., and Koroteev, A.A., Abstracts of Papers,
Nauchnaya konferentsiya “Fundamental’nye khimi-
cheskie issledovaniya XXI veka” (Scientific Conf.
“Fundamental Chemical Studies in XXI Century”),
Moscow, 2016, p. 601.
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 54 No. 1 2018