10.1002/cctc.201700439
ChemCatChem
COMMUNICATION
oC, 60 min. A small amount of di-substituted product was formed (Table S3) [a]
Si-OH group was treated with (MeO)3SiMe.
Toshihide Baba (Tokyo Institute of Technology) for his generous
support and unrestricted access to analytical facilities.
Keywords: mesoporous silica • palladium • concerted catalysis •
supported catalyst • allylation
In order to determine the interaction between allylic alcohol
and MS surface, 13C CP/MAS NMR measurement of allylic
alcohol adsorbed on MS was conducted. As shown in Figure 5,
new broad signals (C1’ and C3’) could be observed. In the case
of allylic alcohol adsorbed on H-ZSM-5, the C1’ signal shifted
from 64 to 71 ppm (Δδ=4 ppm).[36] The C1’ signal on MS also
showed a downfield shift with a smaller Δδ value (1.5 ppm)
suggesting a weak acidic interaction between the hydroxyl group
of allylic alcohol and Si-OH to accelerate the π-allylpalladium
formation (Figure 3B).
[1]
[2]
A. E. Allen, D. W. C. MacMillan, Chem. Sci., 2012, 3, 633.
H. Noda, K. Motokura, A. Miyaji, T. Baba, Angew. Chem., Int. Ed., 2012,
51, 8017.
[3]
[4]
A. T. Dickschat, S. Surmiak, A. Studer, Synlett, 2013, 24, 1523.
A. T. Dickschat, F. Behrends, S. Surmiak, M. Weiβ, H. Eckert, A.
Studer, Chem. Commun., 2013, 49, 2195.
[5]
[6]
[7]
[8]
[9]
H. Noda, K. Motokura, A. Miyaji, T. Baba, Adv. Synth. Catal., 2013, 355,
973.
L. Deiana, L. Ghisu, S. Afewerki, O. Verho, E. V. Johnston, N. Hedin, Z.
Bacsik, A. Córdova, Adv. Synth. Catal., 2014, 356, 2485.
J. Liu, X. Huo, T. Li, Z. Yang, P. Xi, Z. Wang, B. Wang, Chem. Eur. J.,
2014, 20, 11549.
In summary, this study demonstrated the concerted catalysis
between the Pd complex and tertiary amine/silanol in
mesoporous
silica.
The
reactions
using
allylmethylcarbonate/allylacetate were effectively accelerated by
tertiary amine immobilized into the same mesopore with the Pd
complex. The catalytic activity strongly depended on the pore
diameter: a tight space was more effective than a relatively large
pore. Allylic alcohol, a tough allylating agent, was activated by a
Si-OH group on the MS surface, resulting in a higher catalytic
performance of MS/PP-Pd compared with the homogeneous Pd
complex. The precise control of the support morphology is a
high-potential approach for the enhancement of the concerted
catalysis on the surface.
Q. Zhao, Y. Zhu, Z. Sun, Y. Li, G. Zhang, F. Zhang, X. Fan, J. Mater.
Chem. A 2015, 3, 2609.
K. Motokura, K. Saitoh, H. Noda, Y. Uemura, W.-J. Chun, A. Miyaji, S.
Yamaguchi, T. Baba, ChemCatChem, 2016, 8, 331.
[10] K. Motokura, K. Saitoh, H. Noda, W.-J. Chun, A. Miyaji, S. Yamaguchi,
T. Baba, Catal. Sci. Technol., 2016, 6, 5380.
[11] H. Noda, K. Motokura, W.-J. Chun, A. Miyaji, S. Yamaguchi, T. Baba,
Catal. Sci. Technol. 2015, 5, 2714.
[12] A. E. Fernandes, O. Riant, A. M. Jonas, K. F. Jensen, RSC Adv. 2016,
6, 36602.
[13] A. E. Fernandes, O. Riant, K. F. Jensen, A. M. Jonas, Angew. Chem.
Int. Ed., 2016, 55, 11044.
[14] J. Tsuji, Palladium Reagents and Catalysts, Wiley: Chichester, 2004.
[15] D. Laurenti, M. Feuerstein, G. Pèpe, H. Doucet, M. Santelli J. Org.
Chem., 2001, 66, 1633
C1
C2+C2'
[16] S. Huh, H.-T. Chen, J. W. Wiench, M. Pruski, V. S.-Y. Lin, Angew.
Chem. Int. Ed., 2005, 44, 1826.
C3
[17] R. K. Zeidan, S.-J. Hwang, M. E. Davis, Angew. Chem. Int. Ed., 2006,
45, 6332.
C1'
[18] E. L. Margelefsky, R. K. Zeidan, M. E. Davis, Chem. Soc. Rev., 2008,
37, 1118.
C3'
[19] N. A. Brunelli, C. W. Jones, J. Catal., 2013, 308, 60.
[20] B. Sundararaju, M. Achard, C. Bruneau, Chem. Soc. Rev. 2012, 41,
4467.
140
120
100
80
60
[21] N. A. Butt, W. Zhang, Chem. Soc. Rev. 2015, 44, 7929.
[22] K. Manabe, S. Kobayashi, Org. Lett. 2003, 5, 3241.
[23] F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami, M.
Yoshifuji, J. Am. Chem. Soc. 2002, 124, 10968.
13C NMR Chemical Shift / ppm
Figure 5. 13C CP/MAS NMR spectrum for allylic alcohol adsorbed on MS
surface.
[24] H. Kinoshita, H. Shinokubo, K. Oshima, Org. Lett. 2004, 6, 4085.
[25] I. Usui, S. Schmidt, M. Keller, B. Breit, Org. Lett. 2008, 10, 1207.
[26] Y. Gumrukcu, B. de Bruin, J. N. H. Reek, ChemSusChem 2014, 7, 890.
[27] X. Huo, G. Yang, D. Liu, Y. Liu, I. D. Gridnev, W. Zhang, Angew. Chem.
Int. Ed. 2014, 53, 6776.
Acknowledgements
[28] I. Usui, S. Schmidt, M. Keller, B. Breit, Org. Lett. 2009, 11, 1453.
[29] P. T. Tanev, T. J. Pinnavaia, Science, 1995, 267, 865.
[30] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka,
G.D. Stucky, Science, 1998, 279, 548.
XAFS measurements were conducted under the approval of the
Photon Factory Advisory Committee (Proposal no. 2016G025).
This study was supported by the JSPS KAKENHI (Grant no.
25630362 and 15H04182) and JSPS Grant-in-Aid for Scientific
Research on Innovative Areas (Grant no. 16H01010 and
26105003). We would like to thank Dr. Yohei Uemura (Institute
for Molecular Science) for his support with XAFS analysis. We
also appreciate Dr. Kosuke Suzuki, Prof. Kazuya Yamaguchi,
and Prof. Noritaka Mizuno (The University of Tokyo) for their
help with the solid-state NMR measurement. We thank Prof.
[31] R. S. Corrêa, A. E. Graminha, J. Ellena, A. A. Batista, Acta Cryst., 2011,
C67, m304.
[32] A. T. Au, J. L. Nafziger, Patent US 5578740, 1996.
[33] J. A. van Rijn, M. C. Guijt, E. Bouwman, E. Drent, Appl. Organomet.
Chem. 2011, 25, 207.
[34] K. Kolodziuk; P. Lhoste; Z. Sinou, Synth. Commun. 2000, 30, 3955.
[35] H. Uchida, H. Sato, Patent JP5511251, 2014.
[36] A. I. Biaglow, R. J. Gorte, D. White, J. Chem. Soc., Chem. Commun.
1993, 1164.
This article is protected by copyright. All rights reserved.