Communication
ChemComm
microbelts exhibit a gradual color change from orange to green Imaging Technology, the Ministry of Science and Technology of
Fig. 4a and Fig. S16, ESI†). Considering the change in the China (Grant No. 2013CB933500 and 2017YFA0204503).
(
I560/I585 ratio for PL spectra to be about 8 (Fig. 3b), the on–off
ratio of our tunable microlasers is 4 orders of magnitude greater
than that of the PL sensor.
Conflicts of interest
Using the Gaussian03 programs at the B3LYP/6-31G** level,
the energy change containing zero-point vibrational energy
There are no conflicts to declare.
+
ꢁ
in the OPV-DMBA + HCl - OPV-DMBA ꢀHCl gas phase is
ꢁ
1
Notes and references
1 F. Qian, Y. Li, S. Grade ˇc ak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang
ꢁ
6.96 kcal mol , and the change in Gibbs free energy is
ꢁ
1
1
.97 kcal mol at normal temperature, which is very small.
and C. M. Lieber, Nat. Mater., 2008, 7, 701.
The results indicate that the reaction is basically reversible. In
fact, the lasing peaks of the MBs can be recovered from 560 nm
to 585 nm after 24 hours, as the HCl vapor in the confocal dish
2
3
R. Yan, D. Gargas and P. Yang, Nat. Photonics, 2009, 3, 569.
B. Piccione, C.-H. Cho, L. K. van Vugt and R. Agarwal, Nat. Nano-
technol., 2012, 7, 640.
4
5
M. T. Hill and M. C. Gather, Nat. Photonics, 2014, 8, 908.
F. Fan, S. Turkdogan, Z. Liu, D. Shelhammer and C. Z. Ning, Nat.
Nanotechnol., 2015, 10, 796.
evaporated in air. Moreover, with N
flowing system, the recovery time can be shortened to 2 minutes.
After introducing a small amount of N gas to remove the
residual HCl, adding 8 mL of NH vapor accelerates the reversed
2
introduced in the gas
2
6 V. D. Ta, R. Chen, D. M. Nguyen and H. D. Sun, Appl. Phys. Lett.,
013, 102, 031107.
Z. Liu, L. Yin, H. Ning, Z. Yang, L. Tong and C.-Z. Ning, Nano Lett.,
013, 13, 4945–4950.
2
3
7
+
ꢁ
chemical reaction from OPV-DMBA ꢀHCl to OPV-DMBA,
bringing on the lasing peaks recovering from 560 nm to the
coexistence of the two peaks at 585 nm and 560 nm to the
single 585 nm lasing peak consistent with the initial one in 5 s.
2
8 J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum
and Q. Xiong, Nano Lett., 2015, 15, 4571–4577.
A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou and
9
C. Z. Ning, Nano Lett., 2009, 9, 784–788.
(
Fig. 4a and Fig. S17, ESI†).
Excitingly, the chemical reaction tunable switch can still
10 L. Cerdan, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa,
A. Costela and I. Garcia-Moreno, Nat. Photonics, 2012, 6, 623.
1 H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, M. T. Trinh, S. Jin and
1
3
work after several continuous cycles with HCl–NH treatment
X. Y. Zhu, Nat. Mater., 2015, 14, 636.
using the gas flowing system, indicating high stability and 12 Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis,
X. Zhu and S. Jin, ACS Nano, 2016, 10, 7963–7972.
reliability (Fig. 4b, Fig. S16 and S17, ESI†).
1
1
3 Y. Yan and Y. S. Zhao, Chem. Soc. Rev., 2014, 43, 4325–4340.
4 Z. Xu, Q. Liao, Q. Shi, H. Zhang, J. Yao and H. Fu, Adv. Mater., 2012,
24, OP216–OP220.
5 Z. Yu, Y. Wu, L. Xiao, J. Chen, Q. Liao, J. Yao and H. Fu, J. Am. Chem.
Soc., 2017, 139, 6376–6381.
In conclusion, a stimuli-responsive and chemically tunable
organic microcrystal laser switch is realized through a new
chemical reaction tunable mechanism based on OPV-DMBA
1
1
3
molecules. With HCl–NH treatment, the reversible protonation–
6 X. Wang, Q. Liao, X. Lu and H. Fu, Sci. Rep., 2014, 4, 7011.
deprotonation reaction of OPV-DMBA occurs, accompanied by 17 X. Wang, H. Li, Y. Wu, Z. Xu and H. Fu, J. Am. Chem. Soc., 2014, 136,
1
6602–16608.
8 Z. Xu, Q. Liao, X. Wang and H. Fu, Adv. Opt. Mater., 2014, 2,
160–1166.
the changes in the emission peak from 542 nm to 500 nm. With
a high-quality belt-like microcavity together with the emissive
1
1
H-aggregates as superior gain materials, a microlaser at 585 nm 19 D. Venkatakrishnarao, E. A. Mamonov, T. V. Murzina and
R. Chandrasekar, Adv. Opt. Mater., 2018, 6, 1800343.
0 S. Park, O.-H. Kwon, S. Kim, S. Park, M.-G. Choi, M. Cha, S. Y. Park
and D.-J. Jang, J. Am. Chem. Soc., 2005, 127, 10070–10074.
with a low laser threshold was realized. Upon HCl-vapor treatment,
the protonation of surface molecules shifts the lasing wavelength to
2
5
60 nm. Furthermore, much narrower laser emissions above the 21 J. Li, Y. Wu, Z. Xu, Q. Liao, H. Zhang, Y. Zhang, L. Xiao, J. Yao and
5
H. Fu, J. Mater. Chem. C, 2017, 5, 12235–12240.
lasing threshold generate an intensity contrast ratio 410 . The NH
vapor can tune the laser wavelength back to 585 nm. Moreover, this
3
22 W. Zhang, Y. Yan, J. Gu, J. Yao and Y. S. Zhao, Angew. Chem., Int. Ed.,
2015, 54, 7125–7129.
microlaser switch exhibits good repeatability and photostablity 23 Y. Wei, H. Dong, C. Wei, W. Zhang, Y. Yan and Y. S. Zhao, Adv.
Mater., 2016, 28, 7424–7429.
4 H. Dong, Y. Wei, W. Zhang, C. Wei, C. Zhang, J. Yao and Y. S. Zhao,
J. Am. Chem. Soc., 2016, 138, 1118–1121.
25 L. Xu and Q. Zhang, Sci. China Mater., 2017, 60, 1093–1101.
6 L. Xu, Y. Zhao, G. Long, Y. Wang, J. Zhao, D. Li, J. Li, R. Ganguly,
X. W. Sun and Q. Zhang, RSC Adv., 2015, 5, 63080.
7 R. Vattikunta, D. Venkatakrishnarao, C. Sahoo, S. R. G. Naraharisetty,
D. Narayana Rao, K. M u¨ llen and R. Chandrasekar, ACS Appl. Mater.
Interfaces, 2018, 10, 16723.
8 U. Venkataramudu, M. Annadhasan, H. Maddali and R. Chandrasekar,
J. Mater. Chem. C, 2017, 5, 7262–7269.
under several continuous chemical gas treatments, making them
attractive in high-throughput chemical and biological sensing
applications.
This work was supported by the National Natural Science
Foundation of China (Grant No. 91333111, 21503139 and
2
2
2
2
(
1673144), the Beijing Natural Science Foundation of China
Grant No. 2162011), High-level Teachers in Beijing Municipal
Universities in the Period of 13th Five-year Plan (Grant
2
No. IDHT20180517 and CIT&TCD20180331), the Capacity Building 29 X. Li, X. Gao, W. Shi and H. Ma, Chem. Rev., 2014, 114, 590.
3
0 L. Xu, H. Zhu, G. Long, J. Zhao, D. Li, R. Ganguly, Y. Li, Q.-H. Xu and
Q. Zhang, J. Mater. Chem. C, 2015, 3, 9191–9196.
for Sci-Tech Innovation-Fundamental Scientific Research Funds
025185305000/210), Youth Innovative Research Team of Capital
Normal University, and Beijing Advanced Innovation Center for
(
31 J. Chen, S. Ma, J. Zhang, L. Wang, L. Ye, B. Li, B. Xu and W. Tian,
J. Phys. Chem. Lett., 2014, 5, 2781–2784.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 814--817 | 817