JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
CONCLUSIONS
8 H. C. Yu, S. V. Kumar, J. H. Lee, S. Y. Oh, C. M. Chung, Mac-
romol. Res. 2015, 23, 566.
In this work, a novel asymmetric hydroxyl-containing ali-
phatic–aromatic diamine AAP P E was facilely synthesized by
9 D. J. Liaw, C. C. Huang, W. H. Chen, Macromol. Chem. Phys.
006, 207, 434.
y
h
2
way of Henry reaction in three steps. Preliminary screening on
different aromatic dianhydrides reveals the desirable conden-
1
0 A. S. Mathews, L. L. Kim, C. S. Ha, J. Polym. Sci. Part A:
Polym. Chem. 2006, 44, 5254.
sation reactivity of ODPA toward AAP P E. Furthermore, com-
y
h
11 K. Goto, T. Akiike, Y. Inoue, M. Matsubara, Macromol.
Symp. 2003, 199, 321.
parative investigations show that the incorporation of
AAP P E improves the solubility and optical transparence by
y
h
12 X. D. Ji, Z. K. Wang, J. L. Yan, Z. Wang, Polymer 2015, 74,
inhibiting CTC and reducing the chain packing due to the
asymmetric structure and aliphatic ethylene segments, and
meanwhile retains the inherent thermal and mechanical prop-
erties of the polymers. The molar content of the incorporated
AAP P E was found to have fluctuated influences on the film
38.
13 Y. Guan, D. M. Wang, G. L. Song, G. D. Dang, C. H. Chen, H.
W. Zhou, X. G. Zhao, Polymer 2014, 55, 3634.
1
4 Y. Shao, Y. F. Li, X. Zhao, X. L. Wang, T. Ma, F. C. Yang, J.
Polym. Sci. Part A: Polym. Chem. 2006, 44, 6836.
5 C. Y. Wang, W. T. Chen, C. Xu, X. Y. Zhao, J. Li, Chin. J.
Polym. Sci. 2016, 34, 1363.
6 P. K. Tapaswi, M. C. Choi, Y. S. Jung, H. J. Cho, D. J. Seo,
C. S. Ha, J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 2316.
7 W. Volksen, H. J. Cha, M. I. Sanchez, D. Y. Yoon, React.
Funct. Polym. 1996, 30, 61.
8 J. A. Kreuz, B. S. Hsiao, C. A. Renner, D. L. Goff, Macromo-
lecules 1995, 28, 6926.
9 T. Namikoshi, K. Odahara, A. Wakino, M. Murat, S.
Watanabe, High Perform. Polym. 2015, 27, 183.
0 K. Itoya, Y. Kumagai, M. Kakimoto, Y. Imai, Macromolecules
y
h
1
s
surface water contact properties such as h and c , and the simi-
lar effects of the variation of molar content of AAP P E were
observed on the DMA tan d and dielectric constant E .
y
0
h
1
1
We proposed that with the increase of molar content of
AAP P E, the increasing hydroxyl groups would lead the
y
h
1
polymer chain structure to four different stages as outlined
in Figure 13. It is postulated that when the molar content of
1
AAP P E reaches certain value, the pendent alicyclic hydroxyl
y
h
would condense to form interchain cross-linked network. On
increasing addition of AAP P E, the cross-linked polymer
2
y
h
1994, 27, 4101.
would bear some exposed hydroxyl groups because the rigid
polymer chain restricted the free motion of the pendent
hydroxyls. Further increase of AAP P E leads to increasing
21 T. Ogura, M. Ueda, Macromolecules 2007, 40, 3527.
2
2 C. Koninga, A. Delmottea, P. Larnoa, B. V. Mele, Polymer
1998, 39, 3697.
y
h
presence of pendent hydroxyls that would tend to form sec-
ondary interchain weak cross-linking by hydrogen bond.
23 A. E. Eichstadt, T. C. Ward, M. D. Bagwell, I. V. Farr, D. Dunson,
J. E. Mcgrath, J. Polym. Sci. Part B: Polym. Phys. 2002, 40, 1503.
2
4 Y. Watanabe, Y. Sakai, Y. Shibasaki, S. Ando, M. Ueda, Mac-
romolecules 2002, 35, 2277.
5 Y. Guan, C. B. Wang, D. M. Wang, G. D. Dang, C. H. Chen,
H. W. Zhou, X. G. Zhao, Polymer 2015, 62, 1.
6 C. B. Wang, X. G. Zhao, D. B. Tian, D. M. Wang, C. H. Chen,
H. W. Zhou, Des. Monomers Polym. 2017, 20, 97.
7 B. Jarza˛bek, E. Schab-Balcerzak, T. Chamenko, D. S eR ka, J.
Cisowskia, A. Volozhin, J. Non-Cryst. Solids 2002, 2, 1057.
ACKNOWLEDGMENTS
2
The financial supports from the NSFC (Grant Nos. 51263014 and
2
21271099) and Jiangxi Provincial Education Department (Grant
No. GJJ13113) are greatly appreciated. The authors are thankful
to Prof Haoqing Hou from Jiangxi Normal University, China for
kindly providing DMA measurements of all these samples.
2
2
8 Y. T. Chern, H. C. Shiue, Macromolecules 1997, 30, 4646.
2
9 Noboru Ono, The Nitro Group in Organic Synthesis; Wiley-
REFERENCES AND NOTES
VCH, 2001; Chapter 3, p 30.
3
0 J. O. Osby, B. Ganem, Tetrahedron Lett. 1985, 26, 6413.
1
(a) M. K. Ghosh, K. L. Mittal, Polyimides: Fundamentals and
Applications; Marcel Decker: NewYork, 1996, p 1; (b) C. E.
Stroog, History of the Invention and Development of the Polyi-
mides; Plastics Engineering: New York, 1996.
31 Q. Q. Bu, S. J. Zhang, H. Li, Y. F. Li, C. L. Gong, F. C. Yang,
Polym. Degrad. Stab. 2011, 96, 1911.
32 J. Li, H. S. Zhang, F. Liu, J. C. Lai, H. X. Qi, X. Z. You, Poly-
mer 2013, 54, 5673.
2
(a) G. Maier, Prog. Polym. Sci. 2001, 26, 3; (b) H. Lim, W. J.
Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park, K. Lee, Adv.
Mater. 2002, 14, 1275.
33 J. S. Tian, H. Y. Wang, Z. Y. Huang, R. G. Lu, P. H. Cong, X.
J. Liu, T. S. Li, J. Macromol. Sci. B Phys. 2010, 49, 791.
3
Y. W. Liu, C. Qian, L. J. Qu, Y. N. Wu, Y. Zhang, X. H. Wu, B.
34 R. Hagen, L. Salmen, B. Stengerg, J. Polym. Sci. Part B:
Polym. Phys. 1996, 34, 1997.
Zou, W. X. Chen, Z. Q. Chen, Z. G. Chi, S. W. Liu, X. D. Chen,
J. R. Xu, Chem. Mater. 2015, 27, 6543.
35 Y. S. Lu, R. C. Larock, Biomacromolecules 2008, 9, 3332.
4
Z. X. Zhou, Y. Zhang, S. W. Liu, Z. G. Chi, X. D. Chen, J. R.
36 S. Ebisawa, J. Ishiia, M. Sato, L. Vladimirov, M. Hasegawa,
Eur. Polym. J. 2010, 46, 283.
Xu, J. Mater. Chem. C 2016, 4, 10509.
5
A. S. Mathews, I. Kim, C. S. Ha, Macromol. Res. 2007, 15,
37 F. Li, J. C. Lai, W. J. Wan, F. Liu, H. X. Qi, X. S. Li, X. Z.
You, J. Appl. Polym. Sci. 2015, 132, 42670.
114.
6
2
H. J. Ni, J. G. Liu, Z. H. Wang, S. Y. Yang, J. Ind. Eng. Chem.
015, 28, 16.
38 M. Ree, K. Kim, S. H. Woo, H. Chang, J. Appl. Polym. Sci.
1997, 81, 698.
7
X. J. Zhao, J. G. Liu, H. S. Li, L. Fan, S. Y. Yang, J. Appl.
39 G. C. Eastmond, J. Paprotny, R. A. Pethrick, S. M. Fernan, J.
Appl. Polym. Sci. 2015, 132, 41684/1.
Polym. Sci. 2009, 111, 2210.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2017, 00, 000–000
11