ChemComm
Communication
the Guangdong Innovative Research Team Program of China
(201101C0105067115).
Notes and references
1 (a) I. L. Medintz, M. T. Vyeda, E. R. Goldman and H. Mattoussi, Nat.
Mater., 2005, 4, 435; (b) M. W. Peczuh and A. D. Hamilton, Chem.
Rev., 2000, 100, 2479; (c) T. Hutai, H. Tomoda, T. Ohkawa, Y. Yabe
and K. Araki, Angew. Chem., Int. Ed., 2008, 47, 9522; (d) N. A. Rakow
and K. S. Suslick, Nature, 2000, 406, 710; (e) N. A. Rakow, A. Sen,
M. C. Janzen, J. B. Ponder and K. S. Suslick, Angew. Chem., Int. Ed.,
2005, 44, 4528.
2 (a) A. P. Desilva, H. Q. N. Gunaratne, T. Gunnlangsson,
A. J. M. Huxley, C. P. Mccoy, J. T. Rademacher and T. E. Rice, Chem.
Rev., 1997, 97, 1515; (b) W. P. Ambrose, P. M. Goodwin, J. H. Jett,
A. Van Orden, J. H. Werner and R. A. Keller, Chem. Rev., 1999,
99, 2929; (c) W. F. Patton, BioTechniques, 2000, 28, 944.
Fig. 4 (A) Change in the relative emission intensity (I/I0) of TPPA films exposed
to various primary amine gases with time. (B) Reversible switching of the light
emission of TPPA film between dark and bright states by repeated fuming and
heating processes. Excitation wavelength: 350 nm.
3 (a) T. Terail and T. Nagano, Curr. Opin. Chem. Biol., 2008, 12, 515;
(b) S. W. Thomas, G. D. Joly and T. M. Swager, Chem. Rev., 2007,
107, 1339; (c) T. L. Andrew and T. H. Swager, J. Am. Chem. Soc., 2007,
129, 7254.
4 (a) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011,
40, 5361; (b) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun.,
2009, 4332; (c) J. C. Sanchez and W. C. Trogler, J. Mater. Chem., 2008,
18, 3143; (d) E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev.,
2008, 108, 1517; (e) M. Sameiro and T. Goncalves, Chem. Rev., 2009,
109, 190; ( f ) X. Lou, D. Ou, Q. Li and Z. Li, Chem. Commun., 2012,
48, 8462.
5 (a) J. M. Landete, B. Rivas, A. Marcobal and R. Munoz, Int. J. Food
Microbiol., 2007, 117, 258; (b) V. P. Aneja, P. A. Roelle, G. C. Murray,
J. Scutherland, J. W. Erisman, D. Faler, W. A. H. Asman and N. Patni,
Atmos. Environ., 2001, 35, 1903; (c) P. Boeker, G. Horner and
S. Rosler, Sens. Actuators, B, 2000, 70, 37; (d) T. Hernandezjover,
M. Izquierdopulido, M. T. Veciananogues and M. C. Vidalcarou,
J. Agric. Food Chem., 1996, 44, 2710; (e) M. Nakamura, T. Sanji and
M. Tanaka, Chem.–Eur. J., 2011, 17, 5344; ( f ) B. Lee, R. Scopelliti and
K. Severin, Chem. Commun., 2011, 47, 9639.
6 (a) X. Yang, G. Peter and C. Hauser, Electrophoresis, 2006, 27, 468;
(b) X. F. Zhang, X. L. Liu, R. Lu, H. Z. Zhang and P. Gong, J. Mater.
Chem., 2012, 22, 1167; (c) W. X. Zhang, Z. X. Chen and Z. H. Yang,
Phys. Chem. Chem. Phys., 2009, 11, 6263; (d) X. J. Huang, T. Y. You,
T. Li, X. R. Yang and E. K. Wang, Electroanalysis, 1999, 11, 969;
(e) L. Feng, C. J. Musto, J. W. Kemling, S. H. Lim and K. S. Suslick,
Chem. Commun., 2010, 46, 2037.
7 (a) A. Leino and B. M. Loo, Ann. Clin. Biochem., 2007, 44, 563;
(b) W. Putalun, H. Tanaka and Y. Shoyama, Phytochem. Anal., 2005,
16, 370.
8 (a) Y. Takagai, Y. Nojiri, T. Takase, W. L. Hinze, M. Butsugan and
S. Igarashid, Analyst, 2010, 135, 1417; (b) L. J. Fan and W. E. Jones,
J. Am. Chem. Soc., 2006, 128, 6784; (c) M. E. Germain and
M. J. Knapp, Inorg. Chem., 2008, 47, 9748; (d) D. Ryu, E. Park,
D. S. Kim, S. Yan, J. Y. Lee, B. Y. Chang and K. H. Ahn, J. Am. Chem.
Soc., 2008, 130, 2394.
9 (a) X. Feng, B. Tong, J. B. Shen, J. B. Shi, T. Y. Han, L. Chen, J. G. Zhi,
P. Lu, Y. G. Ma and Y. P. Dong, J. Phys. Chem. B, 2010, 114, 16731;
(b) T. Y. Han, X. Feng, B. Tong, J. B. Shi, L. Chen, J. G. Zhi and
Y. P. Dong, Chem. Commun., 2012, 48, 416; (c) X. Y. Shi, H. Wang,
T. Y. Han, X. Feng, B. Tong, J. B. Shi, J. G. Zhi and Y. P. Dong,
J. Mater. Chem., 2012, 22, 19296.
10 (a) J. C. Baum and D. S. McClure, J. Am. Chem. Soc., 1979, 101, 2335;
(b) G. M. Florio, E. L. Sibert and T. S. Zwier, Faraday Discuss., 2001,
118, 315; (c) D. E. Poeltl and J. K. McVey, J. Chem. Phys., 1983,
78, 4349; (d) P. B. Bisht, H. Petek, K. Yoshihara and U. Nagashima,
J. Chem. Phys., 1995, 103, 5290; (e) S. Maheshwary, U. Lourderaj and
N. Sathyamurthy, J. Phys. Chem. A, 2006, 110, 12662; ( f ) J. Y. Lee,
P. C. Painter and M. M. Coleman, Macromolecules, 1988, 21, 954;
(g) C. G. Bazuin and F. A. Brandys, Chem. Mater., 1992, 4, 970;
(h) T. Kato and J. M. J. Frechet, Macromolecules, 1989, 22, 3818;
(i) S. Xiao, Y. Zou, J. Wu, Y. Zhou, T. Yi, F. Lia and C. Huang, J. Mater.
Chem., 2007, 17, 2483.
film becomes progressively higher with an increase in the
exposure time, and reaches its maximum value within a short
time down to 30 s. A short video was made to demonstrate the
fast response of the device to butylamine gas (see ESI†). In
addition to being rapid, the detection method also enjoys the
advantages of reversibility and reproducibility. The FL of the
fumed TPPA film can be ‘‘turned-off’’ easily by heating the film
at 100 1C for 60 s. The ‘‘dark’’ and ‘‘bright’’ states can be
interconverted to each other many times without fatigue and
loss in the FL intensity, as these stimuli are nondestructive in
nature (Fig. 4B).
In summary, a convenient, selective and sensitive fluores-
cent chemosensor has been developed. TPPA is nonemissive in
both solution and solid states. It transforms into a strong
fluorophore in the presence of amine, enabling it to work as
a ‘‘turn-on’’ sensor for amine gas detection. Thus, the TPPA-
loaded filter paper strip becomes emissive when fumed with
primary amine gases, but still remains nonemissive when exposed
to other amines. The detection is rapid and strong, and can be
readily observed by the naked eye due to the ‘‘lighting up’’ nature
of the sensory process. The emission of TPPA can be switched
between the dark and bright states repeatedly by fuming and
heating processes, demonstrating a prototype device using TPPA
for detecting primary amines in real-world applications. Since
ammonia is generated during food degradation, we would like to
utilize TPPA for such detection. This is currently under active
investigation in our laboratory.
This work was partially supported by the National Basic
Research Program of China (973 Program; 2013CB834701),
National Science Foundation of China (20974028, 51073026,
51061160500 and 21074011), the RPC and SRFI Grants of
HKUST (RPC11SC09 and SRFI11SC03PG), the Research Grants
Council of Hong Kong (HKUST2/CRF/10 and N_HKUST620/11),
the Innovation and Technology Commission (ITCPD/17-9), the
University Grants Committee of Hong Kong (AoE/P-03/08), the
Specialized Research Fund for the Doctoral Program of Higher
Education (Grant No. 20091101110031) and the Major Project
Seed Research Program of Beijing Institute of Technology
(Grant No. 2012CX01008). B. Z. Tang thanks the support of
c
4850 Chem. Commun., 2013, 49, 4848--4850
This journal is The Royal Society of Chemistry 2013