3162
G. Cannazza et al. / Tetrahedron: Asymmetry 17 (2006) 3158–3162
Table 3. Calculated values of enantiomerization of IDRA21 on OD-CSP
Compound Solvents
Ks1 ðsꢀ1
Þ
Ksꢀ1 ðsꢀ1
Þ
DG#1 s (kJ/mol) DG#s (kJ/mol) Temperatures (ꢁC)
ꢀ1
2
Water/acetonitrile 80:20 4.93 · 10ꢀ4 2.62 · 10ꢀ4 6.95 · 10ꢀ5 8.13 · 10ꢀ6
96.55 1.10
101.64 0.29
40
(v/v) (flow 0.5 ml/min)
3
Water/acetonitrile 70:30 6.90 · 10ꢀ5 1.68 · 10ꢀ5 8.13 · 10ꢀ5 1.59 · 10ꢀ5 101.72 0.57
101.29 0.46
40
(v/v) (flow 0.5 ml/min)
ks1 and ksꢀ1 were calculated according to Eqs. 1 and 2.
Table 4. Off-column enantiomerization of ( )-(2), ( )-(3), ( )-(4) enantiomers in water/acetonitrile
Compound Solvents
km1 ðsꢀ1
Þ
kmꢀ1 ðsꢀ1
Þ
DG#1 m (kJ/mol) DG#m (kJ/mol) t (ꢁC)
ꢀ1
2
3
4
Water/acetonitrile 80:20 (v/v) 3.65 · 10ꢀ3 0.12 · 10ꢀ3 4.20 · 10ꢀ4 0.42 · 10ꢀ4
Water/acetonitrile 70:30 (v/v) 6.36 · 10ꢀ4 0.54 · 10ꢀ4 6.39 · 10ꢀ4 0.63 · 10ꢀ4
91.34 0.10
95.84 0.21
90.98 0.25
95.88 0.24
104.73 0.05
40
40
60
Water/acetonitrile 70:30 (v/v) 3.31 · 10ꢀ4 0.11 · 10ꢀ4 2.54 · 10ꢀ4 0.04 · 10ꢀ4 103.99 0.09
Column: Chiralcel OD-R (25 · 0.46 cm ID, 10 lm) tris(3,5-dimethylphenyl-carbamate); flow rate: 0.5 ml/min, column operation temperature = 12 ꢁC,
n = 4; time intervals for on-column enantiomerization at 40ꢁ = 50, 100, 150, 22.50.
3.2. Chromatographic enantioseparations
References
1. Wyklicky, L.; Patneau, D. K.; Mayer, M. L. Neuron 1991, 7,
971–984.
2. Patneau, D. K.; Wyklicky, L.; Mayer, M. L. J. Neurosci.
1993, 13, 3496–3509.
3. Yamada, K. A.; Tang, C. M. J. Neurosci. 1993, 1, 3904–3915.
4. Bertolino, M.; Baraldi, M.; Parenti, C.; Braghiroli, D.; Di
Bella, M.; Vicini, S.; Costa, E. Recept. Chan. 1993, 1, 267–
278.
5. Uzunov, D. P.; Zivkovich, I.; Pirkle, W. H.; Costa, E.;
Guidotti, A. J. Pharm. Sci. 1995, 84, 937–942.
6. Zvkovic, I.; Thompson, D. M.; Bertolino, M.; Uzunov, D.;
Di Bella, M.; Costa, E.; Guidotti, A. J. Pharmacol. Exp. Ther.
1995, 2, 300–309.
7. Impagniatiello, F.; Oberto, A.; Longone, P.; Costa, E.;
Guidotti, A. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 7053–
7058.
8. Cannazza, G.; Braghiroli, D.; Baraldi, M.; Parenti, C. J.
Pharm. Biom. Anal. 2000, 23, 117–125.
9. Cannazza, G.; Braghiroli, D.; Tait, A.; Baraldi, M.; Parenti,
C.; Lindner, W. Chirality 2001, 13, 94–101.
10. Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic
Compounds; John Wiley & Sons: New York, 1994; pp 424–
426.
Enantioseparation of ( )-IDRA21, ( )-2 and ( )-3 was
carried out isocratically at different temperatures. The
mobile phases consisted of hexane and 2-propanol for Chiral-
cel OD column, water and acetonitrile for Chiralcel OD-R
column and hexane and tetrahydrofurane (THF) for Chira-
spher NT column. The compounds were dissolved in 2-pro-
panol, acetonitrile or THF depending on the column system
used, while sample solutions were passed through a 0.45 lm
filter prior to injection. The detectors were set at 254 nm.
Pure enantiomers of IDRA21, 2 and 3 were obtained using
a Chiraspher NT column and fraction collection of respec-
tive peaks. The mobile phases (hexane and THF) were evap-
orated by a stream of nitrogen at room temperature. The
enantiomeric excess of the collected enantiomers was mon-
itored on the same Chiraspher NT column.
3.3. On-column enantiomerization
As shown in Figure 2, a racemic mixture of IDRA21 was
first injected on column, kept at low temperature and
passed through it for a fixed period of time. After this time,
the mobile phase flow was stopped and the column was
kept at a certain temperature for a set period of time to
effect enantiomerization of the separated individual enantio-
mers of IDRA21. Afterwards, the column was cooled back
to the initial low temperature conditions and continued to
run at the original flow rate. Apparent enantiomerization
rates were calculated using the peak areas of separated
enantiomers, as depicted in Figure 2.
11. Reist, M.; Testa, B.; Carrupt, P. A.; Jung, M.; Schurig, V.
Chirality 1995, 7, 396–400.
12. Jung, M.; Schurig, V. J. Am. Chem. Soc. 1992, 114, 529–534.
13. Mannschreck, A.; Zimmer, H.; Pustet, N. Chimia 1989, 43,
165–166.
14. Cabrera, K.; Jung, M.; Fluck, M.; Schurig, V. J. Chromatogr.
A 1996, 731, 315–321.
15. Burkle, W.; Karfunkel, H.; Schurig, V. J. Chromatogr. 1984,
288, 1–14.
16. Trapp, O.; Schurig, V. J. Am. Chem. Soc. 2000, 122, 1424–
1430.
3.4. Off-column enantiomerization
17. Weseloh, G.; Wolf, C.; Konig, W. A. Angew. Chem. 1995,
107, 1771–1772.
18. Schurig, V.; Glausch, A.; Fluck, M. Tetrahedron: Asymmetry
1995, 6, 2161–2164.
19. Lorenz, K.; Yashima, E.; Okamoto, Y. Angew. Chem., Int.
Ed. 1998, 110, 2025–2028.
20. Tobler, E.; Lammerhofer, M.; Mancini, G.; Lindner, W.
Chirality 2001, 13, 641–647.
Single enantiomers of IDRA21, 2 and 3, obtained as previ-
ously described by low temperature chromatography and
solvent evaporation, were used to study enantiomerization
in different solvents. These enantiomers (ꢁ20 lg) were dis-
solved in the individual solvent and thermostated in a
thermostated bath. Enantiomerizations were monitored
by chromatography on Chiralcel OD or OD-R columns
of samples fractions (20 ll) every 5 min for at least four
times. Enantiomeric ratios were calculated by measuring
the peaks areas of the enantiomers.
´
21. Krupcik, J.; Oswald, P.; Majek, P.; Sandra, P.; Armstrong,
D. W. J. Chromatogr. A 2003, 1000, 779–800.
22. Braghiroli, D.; Puia, G.; Cannazza, G.; Tait, A.; Parenti, C.;
Losi, G.; Baraldi, M. J. Med. Chem. 2002, 45, 2355–2357.