Article
.9% in 3 to 2.6% in 1. In the unsubstitued hydantoin (4), the
Crystal Growth & Design, Vol. 10, No. 10, 2010 4483
0
the X-ray powder diffractometer in the Department of Physics,
Jadavpur University, is gratefully acknowledged.
H
actions account for 56.5% to the Hirshfeld surface area
H interactions contribute 21.8% and the O H inter-
3
3 3
3 3 3
Supporting Information Available: Three crystallographic files
CIF); observed and simulated X-ray powder diffraction patterns.
(Figures 7 and 8). With different aliphatic and aromatic
(
substituents at the hydantoin C5-position, the contribution
of H H interactions to the Hirshfeld surface increases
steadily up to well over 70% in 2 with a corresponding
This material is available free of charge via the Internet at http://
pubs.acs.org.
3
3 3
References
decrease in the contribution of O H interactions to 22%
3 3
3
6
in OGUVIV. Figure 8 indicates that the molecular inter-
5
(
1) Desiraju, G. R. Science 1997, 278, 404–405.
0
actions in 5,5 -substituted hydantoins are predominantly of
the H H and O H types, which can account for 90-98%
3 3 3 3 3
(2) Topics in Current Chemistry: Design of Organic Solids; Weber., E.,
Ed.; Springer-Verlag: Berlin, 1998; Vol. 198.
3
(3) Desiraju, G. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2311–2327.
(4) Nangia, A.; Desiraju, G. R. Top. Curr. Chem. 1998, 198, 57–95.
(5) Desiraju, G. R. Nature 2001, 412, 397–400.
of the Hirshfeld surface area, whereas in the unsubstituted
6
2
hydantoin the corresponding fraction is less than 80%. The
contribution of O H interactions varies from 22.1% in
(6) Allen, F. H.; Motherwell, W. D. S.; Raithby, P. R.; Shields, G. P.;
Taylor, R. New J. Chem. 1999, 23, 25–34.
7) Sethuraman, V.; Stanley, N.; Muthiah, P. T.; Sheldrick, W. S.;
3
3 3
6
5
22
OGUVIV to 44.8% in BEPNIT and can be attributed to
various substitutions on the hydantoin moiety, which in turn
facilitates the formation of different supramolecular synthons,
leading to diverse crystal packing arrangements.
(
Winter, M.; Luger, P.; Weber, M. Cryst. Growth Des. 2003, 3, 823–
8
8) Ling, I.; Alias, Y.; Sobolev, A. N.; Raston, C. L. New J. Chem.
28.
(
(
Hydrogen bond synthon energy was calculated with the
3
program DMol at the BLYP level using the DNP basis set.
2010, 34, 414–419.
9) Jha, S.; Silversides, J. D.; Boyle, R. W.; Archibald, S. J. CrystEng-
Comm 2010, 12, 1730–1739.
10) Reddy, L. S.; Chandran, S. K.; George, S.; Babu, N. J.; Nangia, A.
Different synthons were built from the structures of 1-3
obtained by X-ray analysis with their hydrogen atom posi-
tions corrected. The synthon energy (ΔE) was estimated as the
difference between the N-H O bonded dimers (1 and 3) or
(
Cryst. Growth Des. 2007, 7, 2675–2690.
(11) Murray, R. G.; Whitehead, D. M.; Strat, F. L.; Conway, S. J. Org.
Biomol. Chem. 2008, 6, 988–991.
3
3 3
(
12) Meusel, M.; Gutschow, M. Org. Prep. Proced. Int. 2004, 36,
91–443.
tetramer (2) and the sum of the isolated monomer energies,
3
13) Williams, D. A.; Lemke, T. L. Foye’s Principles of Medicinal
and so it only included the interactions within the complex, i.e.
N-H O hydrogen bonds but not the C-H O inter-
(
3
3 3
3 3 3
Chemistry, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, 2002.
6
6
actions. The ΔE values of -18.7, -16.9, and -21.3 kcal/
mol for compounds 1, 2, and 3 are consistent with the
(14) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical
Substances, Synthesis, Patents, Applications, 4th ed.; Thieme: Stuttgart,
2001.
(15) Malawska, B. Curr. Topics Med. Chem. 2005, 5, 69–85.
(16) Cavazzoni, A.; Alfieri, R. R.; Carmi, C.; Zuliani, V.; Galetti, M.;
1
1
2
2
observation that the synthon types C (4)C (4)[R (8)] in 1
2
and C (9)[R (8)][R (8)] in 3 are energetically more favor-
2
1
1
2
2
2
2
able and consequently relatively abundant in 5-substituted
hydantoins. This fact is also corroborated by the relatively
higher contribution of O-H interactions to the Hirshfeld
surfaces of 1 and 3 than that in compound 2.
Fumarola, C.; Frazzi, R.; Bonelli, M.; Bordi, F.; Lodola, A.; Mor,
M.; Petronini, P. G. Mol. Cancer Ther. 2008, 7, 361–370.
ꢀ
(
17) G u€ tschow, M.; Hecker, T.; Eger, K. Synthesis. 1999, 410-414
(
and references cited therein).
(
(
18) Ahmed, K. I. Carbohydr. Res. 1998, 306, 567–573.
19) Burton, S. G.; Dorrington, R. A. Tetrahedron: Asymmetry 2004,
1
5, 2737–2741.
20) Chen, H.; Ho, C.; Lui, J.; Lin, K.; Wang, Y.; Lu, C.; Lui, H.
Conclusions
(
0
Biotechnol. Prog. 2003, 19, 864–873.
21) Allen, F. H. Acta Crystallogr., Sect. B 2002, 58, 380–388.
In the crystal structures of 5,5 -substituted hydantoins
(
(
1-3), multiple N-H O hydrogen bonds lead to different
3 3 3
(22) Cassady, R. E.; Hawkinson, S. W. Acta Crystallogr., Sect.B 1982,
8, 1646–1647.
(23) Camerman, A.; Camerman, N. Acta Crystallogr., Sect.B 1971, 27,
205–2211.
24) David, W. I. F.; Shankland, K. Acta Crystallogr., Sect. A 2008, 64,
2–64.
typesof supramoleculararchitectures, which isinteresting and
significant from a crystal engineering point of view. The series
highlights the subtleties of crystal packing with the variation
of substitutions in the hydantoins despite the presence of
similar hydrogen bond functionalities. The hydantoin (1),
with a symmetrically substituted dipropyl chain, exhibits a
3
2
(
(
5
25) Structure Determination from Powder Diffraction Data; David,
W. I. F., Shankland, K., McCusker, L. B., Baerlocher, Ch., Eds.; Oxford
University Press: New York, 2002.
26) Pagola, S.; Stephens, P. W.; Bohle, D. S.; Kosar, A. D.; Madsen,
S. K. Nature 2000, 404, 307–310.
(27) Harris, K. D. M.; Cheung, E. Y. Chem. Soc. Rev. 2004, 33, 526–538.
(28) Bhattacharya, A.; Kankanala, K.; Pal, S.; Mukherjee, A. K. J. Mol.
Struct. 2009, 975, 40–46.
29) Takeya, S.; Udachin, K. A.; Moudrakovski, I. L.; Susilo, R.;
Ripmeester, J. A. J. Am. Chem. Soc. 2010, 132, 524–531.
1
1
1
1
2
2
one-dimensional C (4)C (4)[R (8)] network, in which only
one carbonyl O atom takes part in the intermolecular hydro-
gen bonding, whereasin3, with a spirosubstitution atthe C(5)
(
position, both N-H O hydrogen bonds are involved in
3 3
3
2
2
2
2
2
building a C (9)[R (8)][R (8)] framework. The dibutyl
substituted hydantoin (2), on the contrary, generates two-
2
(
4
4
dimensional molecular sheets of fused R (17) rings, a synthon
(
30) Guguta, C.; van Eck, E. R. H.; de Gelder, R. Cryst. Growth Des.
unprecedented in this class of compounds. These structures
add to the range of known hydantoin structures, which, taken
with the hypothetical structures for the unsubstituted hydantoin
generated in the third blind test of crystal structure prediction,
show that the hydantoin functional group can adopt a range
of supramolecular motifs.
2
(31) Chattopadhyay, B.; Basu, S.; Chakraborty, P.; Choudhuri, S. K.;
009, 9, 3384–3395.
Mukherjee, A. K.; Mukherjee, M. J. Mol. Struct. 2009, 932, 90–96.
32) Chattopadhyay, B.; Mukherjee, M.; Kantharaju; Sureshbabu,
(
(
(
V. V.; Mukherjee, A. K. Z. Kristallogr. 2008, 223, 591–597.
33) Werner, P. E.; Eriksson, L.; Westdahl, M. J. Appl. Crystallogr.
1
34) Altomare, A.; Caliandro, R.; Camalli, M.; Cuocci, C.; Giacovazzo,
985, 18, 367–370.
C.; Moliterni, A. G. G.; Rizzi, R. J. Appl. Crystallogr. 2004, 37,
Acknowledgment. Financial support from the University
Grants Commission, New Delhi, and the Department of
Science and Technology, Government of India, New Delhi,
through the DRS (SAP-II) and FIST programs for purchasing
1
025–1028.
(
35) David, W. I. F.; Shankland, K.; van de Streek, J.; Pidcock, E.;
Motherwell, W. D. S.; Cole, J. C. J. Appl. Crystallogr. 2006, 39,
910–915.