1294
R. Wippel et al. / Biochemical Pharmacology 67 (2004) 1285–1295
[2] Ischiropoulos H. Biological tyrosine nitration: a pathophysiological
[21] Klotz LO, Sies H. Defenses against peroxynitrite: selenocompounds
and flavonoids. Toxicol Lett 2003;140/141:125–32.
function of nitric oxide and reactive oxygen species. Arch Biochem
Biophys 1998;356:1–11.
[22] Schroeder P, Klotz LO, Buchczyk DP, Sadik CD, Schewe T, Sies H.
Epicatechin selectively prevents nitration but not oxidation reactions
of peroxynitrite. Biochem Biophys Res Commun 2001;285:782–7.
[23] Schroeder P, Klotz LO, Sies H. Amphiphilic properties of (ꢀ)-
epicatechin and their significance for protection of cells against
peroxynitrite. Biochem Biophys Res Commun 2003;307:69–73.
[24] Stoner GD, Mukhtar H. Polyphenols as cancer chemopreventive
agents. J Cell Biochem Suppl 1995;22:169–80.
[3] Kong SK, Yim MB, Stadtman ER, Chock PB. Peroxynitrite disables
the tyrosine phosphorylation regulatory mechanism: lymphocyte-spe-
cific tyrosine kinase fails to phosphorylate nitrated cdc2(6-20)NH2
peptide. Proc Natl Acad Sci USA 1996;93:3377–82.
[4] Go YM, Patel RP, Maland MC, Park H, Beckman JS, Darley-Usmar
VM, Jo H. Evidence for peroxynitrite as a signaling molecule in flow-
dependent activation of c-Jun NH(2)-terminal kinase. Am J Physiol
1999;277:H1647–53.
[25] Sanbongi C, Suzuki N, Sakane T. Polyphenols in chocolate, which
have antioxidant activity, modulate immune functions in humans in
vitro. Cell Immunol 1997;177:129–36.
[5] Berlett BS, Levine RL, Stadtman ER. Carbon dioxide stimulates
peroxynitrite-mediated nitration of tyrosine residues and inhibits
oxidation of methionine residues of glutamine synthetase: both mod-
ifications mimic effects of adenylylation. Proc Natl Acad Sci USA
1998;95:2784–9.
[26] Rice-Evans CA, Miller NJ, Paganga G. Structure–antioxidant activity
relationships of flavonoids and phenolic acids. Free Radic Biol Med
1996;20:933–56.
[6] MacMillan-Crow LA, Crow JP, Thompson JA. Peroxynitrite-mediated
inactivation of manganese superoxide dismutase involves nitration
and oxidation of critical tyrosine residues. Biochemistry 1998;37:
1613–22.
[27] Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A, Witteman JC.
Inverse association of tea and flavonoid intakes with incident myo-
cardialinfarction:theRotterdam Study. AmJ ClinNutr 2002;75:880–6.
[28] van Acker SA, Tromp MN, Haenen GR, van der Vijgh WJ, Bast A.
Flavonoids as scavengers of nitric oxide radical. Biochem Biophys
Res Commun 1995;214:755–9.
[7] Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson
GJ, Tarpey MM, Barbeito L, Beckman JS. Induction of nitric oxide-
dependent apoptosis in motor neurons by zinc-deficient superoxide
dismutase. Science 1999;286:2498–500.
[29] Robak J, Gryglewski RJ. Flavonoids are scavengers of superoxide
anions. Biochem Pharmacol 1988;37:837–41.
[8] Eiserich JP, Estevez AG, Bamberg TV, Ye YZ, Chumley PH, Beckman
JS, Freeman BA. Microtubule dysfunction by posttranslational nitro-
tyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of
cellular injury. Proc Natl Acad Sci USA 1999;96:6365–70.
[9] van der Vliet A, Eiserich JP, O’Neill CA, Halliwell B, Cross CE.
Tyrosine modification by reactive nitrogen species: a closer look. Arch
Biochem Biophys 1995;319:341–9.
[30] Kostyuk VA, Kraemer T, Sies H, Schewe T. Myeloperoxidase/nitrite-
mediated lipid peroxidation of low-density lipoprotein as modulated
by flavonoids. FEBS Lett 2003;537:146–50.
[31] Brennan ML, Wu W, Fu X, Shen Z, Song W, Frost H, Vadseth C,
Narine L, Lenkiewicz E, Borchers MT, Lusis AJ, Lee JJ, Lee NA, Abu-
Soud HM, Ischiropoulos H, Hazen SL. A tale of two controversies:
defining both the role of peroxidases in nitrotyrosine formation in vivo
using eosinophil peroxidase and myeloperoxidase-deficient mice, and
the nature of peroxidase-generated reactive nitrogen species. J Biol
Chem 2002;277:17415–27.
[10] Lymar SV, Hurst JK. Carbon dioxide: physiological catalyst for
peroxynitrite-mediated cellular damage or cellular protectant? Chem
Res Toxicol 1996;9:845–50.
[11] Lymar SV, Hurst JK. Rapid reaction between peroxonitrite ion and
carbon dioxide: implications for biological activity. J Am Chem Soc
1995;117:8867–8.
[32] Leber A, Hemmens B, Klosch B, Goessler W, Raber G, Mayer B,
Schmidt K. Characterization of recombinant human endothelial nitric-
oxide synthase purified from the yeast Pichia pastoris. J Biol Chem
1999;274:37658–64.
[12] Gow A, Duran D, Thom SR, Ischiropoulos H. Carbon dioxide
enhancement of peroxynitrite-mediated protein tyrosine nitration.
Arch Biochem Biophys 1996;333:42–8.
[33] Kukovetz WR, Holzmann S. Tolerance and cross tolerance between
SIN-1 and nitric oxide in bovine coronary arteries. J Cardiovasc
Pharmacol 1989;14:S40–6.
[13] Denicola A, Freeman BA, Trujillo M, Radi R. Peroxynitrite reaction
with carbon dioxide/bicarbonate: kinetics and influence on peroxyni-
trite-mediated oxidations. Arch Biochem Biophys 1996;333:49–58.
[14] Burner U, Furtmuller PG, Kettle AJ, Koppenol WH, Obinger C.
Mechanism of reaction of myeloperoxidase with nitrite. J Biol Chem
2000;275:20597–601.
[34] Pfeiffer S, Gorren AC, Schmidt K, Werner ER, Hansert B, Bohle DS,
Mayer B. Metabolic fate of peroxynitrite in aqueous solution. Reac-
tion with nitric oxide and pH-dependent decomposition to nitrite and
oxygen in a 2:1 stoichiometry. J Biol Chem 1997;272:3465–70.
[35] Schmidt K, Klatt P, Mayer B. Reaction of peroxynitrite with oxyhae-
moglobin: interference with photometrical determination of nitric
oxide. Biochem J 1994;301:645–7.
[15] Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A.
Formation of nitrating and chlorinating species by reaction of nitrite
with hypochlorous acid. A novel mechanism for nitric oxide-mediated
protein modification. J Biol Chem 1996;271:19199–208.
[16] Whiteman M, Hooper DC, Scott GS, Koprowski H, Halliwell B.
Inhibition of hypochlorous acid-induced cellular toxicity by nitrite.
Proc Natl Acad Sci USA 2002;99:12061–6.
[36] Mayer B, Brunner F, Schmidt K. Inhibition of nitric oxide synthesis by
methylene blue. Biochem Pharmacol 1993;45:367–74.
[37] Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS,
Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in
biological fluids. Anal Biochem 1982;126:131–8.
[17] Whiteman M, Rose P, Halliwell B. Inhibition of hypochlorous acid-
induced oxidative reactions by nitrite: is nitrite an antioxidant?
Biochem Biophys Res Commun 2003;303:1217–24.
[38] Golser R, Gorren AC, Leber A, Andrew P, Habisch HJ, Werner ER,
Schmidt K, Venema RC, Mayer B. Interaction of endothelial and
neuronal nitric-oxide synthases with the bradykinin B2 receptor.
Binding of an inhibitory peptide to the oxygenase domain blocks
uncoupled NADPH oxidation. J Biol Chem 2000;275:5291–6.
[39] Mayer B, Klatt P, Werner ER, Schmidt K. Molecular mechanisms of
inhibition of porcine brain nitric oxide synthase by the antinociceptive
drug 7-nitro-indazole. Neuropharmacology 1994;33:1253–9.
[40] Kettle AJ, Winterbourn CC. Assays for the chlorination activity of
myeloperoxidase. Methods Enzymol 1994;233:502–12.
[18] Whiteman M, Siau JL, Halliwell B. Lack of tyrosine nitration by
hypochlorous acid in the presence of physiological concentrations of
nitrite. Implications for the role of nitryl chloride in tyrosine nitration
in vivo. J Biol Chem 2003;278:8380–4.
[19] Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in
the relationship between mammalian hosts and microbial pathogens.
Proc Natl Acad Sci USA 2000;97:8841–8.
[20] Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxyni-
trite: the good, the bad, and the ugly. Am J Physiol 1996;271:C1424–
37.
[41] Shigenaga MK. Quantitation of protein-bound 3-nitrotyrosine by
high-performance liquid chromatography with electrochemical detec-
tion. Methods Enzymol 1999;301:27–40.