Organic Letters
Letter
(13) Reviews on N−C amide cross-coupling: (a) Meng, G.; Shi, S.;
Szostak, M. Synlett 2016, 27, 2530. (b) Liu, C.; Szostak, M. Chem. - Eur. J.
ACS Catal. 2017, 7, 1413.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(14) (a) Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.;
Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.
(b) Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75.
(c) Simmons, B. J.; Weires, N. A.; Dander, J. E.; Garg, N. K. ACS Catal.
2016, 6, 3176. (d) Dander, J. E.; Weires, N. A.; Garg, N. K. Org. Lett.
2016, 18, 3934. (e) Hie, L.; Baker, E. L.; Anthony, S. M.; Desrosiers, J.
N.; Senanayake, C.; Garg, N. K. Angew. Chem., Int. Ed. 2016, 55, 15129.
(f) Li, X.; Zou, G. Chem. Commun. 2015, 51, 5089. (g) Meng, G.;
Szostak, M. Org. Lett. 2015, 17, 4364. (h) Meng, G.; Szostak, M. Org.
Biomol. Chem. 2016, 14, 5690. (i) Shi, S.; Szostak, M. Chem. - Eur. J.
2016, 22, 10420. (j) Meng, G.; Szostak, M. Angew. Chem., Int. Ed. 2015,
54, 14518. (k) Shi, S.; Meng, G.; Szostak, M. Angew. Chem., Int. Ed. 2016,
55, 6959. (l) Meng, G.; Szostak, M. Org. Lett. 2016, 18, 796. (m) Meng,
G.; Shi, S.; Szostak, M. ACS Catal. 2016, 6, 7335. (n) Shi, S.; Szostak, M.
Org. Lett. 2016, 18, 5872. (o) Liu, C.; Meng, G.; Liu, Y.; Liu, R.;
Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2016, 18, 4194. (p) Liu,
C.; Meng, G.; Szostak, M. J. Org. Chem. 2016, 81, 12023. (q) Lei, P.;
Meng, G.; Szostak, M. ACS Catal. 2017, 7, 1960. (r) Hu, J.; Zhao, Y.; Liu,
J.; Zhang, Y.; Shi, Z. Angew. Chem., Int. Ed. 2016, 55, 8718. (s) Cui, M.;
Wu, H.; Jian, J.; Wang, H.; Liu, C.; Daniel, S.; Zeng, Z. Chem. Commun.
2016, 52, 12076. (t) Wu, H.; Cui, M.; Jian, J.; Zheng, Z. Adv. Synth.
Catal. 2016, 358, 3876. (u) Wu, H.; Liu, T.; Cui, M.; Li, Y.; Jian, J.;
Wang, H.; Zeng, Z. Org. Biomol. Chem. 2017, 15, 536. (v) Dey, A.;
Sasmai, S.; Seth, K.; Lahiri, G. K.; Maiti, D. ACS Catal. 2017, 7, 433.
(w) Liu, L.; Chen, P.; Sun, Y.; Wu, Y.; Chen, S.; Zhu, J.; Zhao, Y. J. Org.
Chem. 2016, 81, 11686.
Experimental procedures and characterization data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Present Address
∥Department of Chemistry and Biochemistry, University of
Delaware, Newark, Delaware 19716, United States.
Author Contributions
§These authors contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by Rutgers University. Y.L. is
thankful for a scholarship from the National Natural Science
Foundation of China (21472161) and the Priority Academic
Program Development of Jiangsu Higher Education-Yangzhou
University (BK2013016). M.A. thanks the Chemistry Depart-
ment (Rutgers University) for a Summer Undergraduate
Fellowship. The Bruker 500 MHz spectrometer used in this
study was supported by the NSF-MRI grant (CHE-1229030).
(15) (a) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, M. J.
Org. Chem. 2016, 81, 8091. (b) Pace, V.; Holzer, W.; Meng, G.; Shi, S.;
Lalancette, R.; Szostak, R.; Szostak, M. Chem. - Eur. J. 2016, 22, 14494.
(c) Szostak, R.; Aube, J.; Szostak, M. Chem. Commun. 2015, 51, 6395.
́
(16) For seminal studies on amide bond destabilization, see:
(a) Greenberg, A.; Venanzi, C. A. J. Am. Chem. Soc. 1993, 115, 6951.
(b) Greenberg, A.; Moore, D. T.; DuBois, T. D. J. Am. Chem. Soc. 1996,
118, 8658. (c) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731. (d) Kirby,
A. J.; Komarov, I. V.; Wothers, P. D.; Feeder, N. Angew. Chem., Int. Ed.
1998, 37, 785.
REFERENCES
■
(1) (a) Gonzalez-Rosende, M. E.; Castillo, E.; Lasri, J.; Sepulveda-
Arques, J. Prog. React. Kinet. Mech. 2004, 29, 311. (b) Pattabiraman, V.
R.; Bode, J. W. Nature 2011, 480, 471. (c) Loomis, W. D.; Stumpf, P. K.
Transamination and Transamidation. In Nitrogen Metabolism; Allen, E.
K.; et al., Eds.; Springer: Heidelberg, 1958. (d) Ojeda-Porras, A.;
Gamba-Sanchez, D. J. Org. Chem. 2016, 81, 11548.
(17) Amide resonance energies have been calculated at the B3LYP/6-
311++G(d,p) level using the COSNAR method.16a This method has
been found reliable in predicting resonance energies of destabilized
amides. See, refs 15a, 15b, and 16a for details.
(18) (a) Liu, Y.; Meng, G.; Liu, R.; Szostak, M. Chem. Commun. 2016,
52, 6841. (b) Liu, Y.; Liu, R.; Szostak, M. Org. Biomol. Chem. 2017, 15,
1780.
(19) Mucsi, Z.; Chass, G. A.; Csizmadia, I. G. J. Phys. Chem. B 2008,
112, 7885.
(20) (a) Hie, L.; Nathel, N. F. F.; Hong, X.; Yang, Y. F.; Houk, K. N.;
Garg, N. K. Angew. Chem., Int. Ed. 2016, 55, 2810. (b) Pu, X.; Hu, J.;
Zhao, Y.; Shi, Z. ACS Catal. 2016, 6, 6692.
́
(2) Aube, J. Angew. Chem., Int. Ed. 2012, 51, 3063.
(3) Greenberg, A., Breneman, C. M., Liebman, J. F., Eds. The Amide
Linkage: Structural Significance in Chemistry, Biochemistry, and Materials
Science; Wiley: New York, 2000.
(4) For leading examples of transamidation of primary amides, see:
(a) Dineen, T. A.; Zajac, M. A.; Myers, A. G. J. Am. Chem. Soc. 2006, 128,
16406. (b) Allen, A. C.; Atkinson, B. N.; Williams, J. M. Angew. Chem.,
Int. Ed. 2012, 51, 1383.
(5) (a) Bon, E.; Bigg, D. C. H.; Bertrand, G. J. Org. Chem. 1994, 59,
4035. (b) Eldred, S. E.; Stone, D. A.; Gellman, S. H.; Stahl, S. S. J. Am.
Chem. Soc. 2003, 125, 3422.
(6) Sergeeva, M. V.; Mozhaev, V. V.; Rich, J. O.; Khmelnitsky, Y. L.
Biotechnol. Lett. 2000, 22, 1419.
(7) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis;
Pergamon Press: Oxford, 1991.
(8) Eisenberg, K. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 11207.
(9) Marchildon, K. Macromol. React. Eng. 2011, 5, 22.
(10) Baker, E. L.; Yamano, M. M.; Zhou, Y.; Anthony, S. M.; Garg, N.
K. Nat. Commun. 2016, 7, 11554.
(11) (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509,
299. (b) Mesganaw, T.; Garg, N. K. Org. Process Res. Dev. 2013, 17, 29.
(c) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita,
A. M.; Garg, N. K.; Perec, V. Chem. Rev. 2011, 111, 1346.
(12) Davidsen, S. K.; May, P. D.; Summers, J. B. J. Org. Chem. 1991, 56,
5482.
D
Org. Lett. XXXX, XXX, XXX−XXX