2858
1H, 2-C≡C-H), 7.35 (dd, 3J1=9.5 Hz, 3J2=9.5 Hz, 2H, 5/7-H), 7.68 (tt, 3J1=9.9 Hz, 1H, 5J2=1 Hz, 1H,
6-H), 8.50 (d, 3J=9.3 H, 2H, 4/8-H); 13C NMR (CDCl3): δC=77.65, 78.82, 84.17, 89.18, 112.13, 127.12,
134.21, 137,63, 140.61, 141.72; UV–vis (n-hexane): λmax=231 nm, 253, 271, 276, 284, 287, 318 sh, 323,
339, 359, 371, 377, 388, 393, 578, 580, 615, 672, 692, 708 sh, 748, 774.
Acknowledgements
This work was generously supported by the Fonds der Chemischen Industrie and the Dr. Otto Röhm
Gedächtnisstiftung, Darmstadt. Dr. A. H. M. Elwahy thanks the Alexander von Humboldt Foundation for
a research fellowship.
References
1. Handbook of Conducting Polymers; Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, I. R., Eds.; Dekker: New York, 1998.
2. Müllen, K. Pure & Appl. Chem. 1993, 65, 89–96; Diederich, F.; Martin, R. E. Angew. Chem. 1999, 111, 1440–1469; Angew.
Chem., Int. Ed. 1999, 38, 1350–1377; Scherf, U., Müllen, K. Synthesis 1992, 23–38; Tour, J. M. Chem. Rev. 1996, 96,
537–553; Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P.G. Science 1997, 277, 1793–1796; Electronic Materials: The
Oligomer Approach; Müllen, K.; Wegner, G.; Eds.; Wiley–VCH: Weinheim, 1997.
3. Baumgarten, M.; Müllen, K. Top. Curr. Chem. 1994, 169, 1–104.
4. Schmitt, S.; Baumgarten, M.; Simon, J.; Hafner, K. Angew. Chem. 1998, 110, 1130–1133; Angew. Chem., Int. Ed. 1998, 37,
1078–1081.
5. Diederich, F. In Modern Acetylene Chemistry; Stang, P. J.; Diederich, F.; Eds.; VCH: Weinheim, 1995; pp. 443–471.
6. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769–3772.
7. Wentrup, C.; Winter, H.-W. Angew. Chem. 1978, 90, 643–644; Angew. Chem., Int. Ed. Engl. 1978, 17, 609–610.
8. 1- and 2-ethynylazulenes (72%) as well as 1,2- and 1,3-diethynylazulenes (23–26%) were also recently prepared from
the corresponding aldehydes with lithium trimethylsilyldiazomethane; Fujimori, K. Abstract 1P31, 13th Symposium on
Fundamental Organic Chemistry; Nagoya University, Japan Nov. 1–3, 1996, and personal communication.
9. The mono- and diiodoazulenes 2a, b and 3a, b were obtained by reacting the corresponding azulenes with 1 and 2.2 equiv.
NIS, respectively, in dichloromethane. The solvent was then removed in vacuo below 10°C followed by chromatography
on alumina (BII-III) using n-hexane as an eluent. The greenish blue residue was immediately resolved in triethylamine for
further cross-coupling reactions. For the synthesis of 1-iodo-and 1-bromoazulene as well as 1,3-dibromoazulene see also:
Hafner, K.; Patzelt, H.; Kaiser, H. Liebigs Ann. Chem. 1962, 656, 24–33. For the synthesis of 2-iodoazulene (4) see: Nozoe,
T.; Seto, S.; Matsumura, S. Bull. Chem. Soc. Jpn. 1962, 35, 1990–1998.
10. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467–4470; Tohda, Y.; Sonogashira, K.; Hagihara, N.
Synthesis 1977, 777–778.
11. The trimethylsilylethynylazulenes 5a, 6a could also be obtained in 25–35% yields from the Pd-catalyzed cross-coupling
reaction of the corresponding bromoazulenes9 with TMSA in refluxing triethylamine.
12. McDonald, R. N.; Richmond, J. M.; Curtis, J. R.; Petty, H. E.; Hoskins, T. L. J. Org. Chem. 1976, 41, 1811–1921; Morita,
T.; Takase, K. Bull. Chem. Soc. Jpn. 1982, 55, 1144–1152.
13. Schmitt, S. PhD Thesis, TU Darmstadt, 1998; Jutz, C.; Schweiger, E.; Löbring, H.-G.; Kraatz, A.; Kosbahn, W. Chem. Ber.
1974, 107, 2956–2975.
14. Attempts to synthesize 1a, b, d, f and g by the Corey–Fuchs method, starting from the corresponding formylazulenes were
unsuccessful presumably due to the deactivation of the carbonyl function at the five-membered ring.
15. Depending on the number and position of the ethynyl groups in the azulene-system the bathochromic shift ranged from
3–48 nm.
16. The described new compounds gave correct elemental analyses.
17. NMR spectra were recorded with a Bruker NMR spectrometer WM 300 in CDCl3 with tetramethylsilane as internal
standard. UV–vis spectra were recorded with a Beckman UV-5240 spectrometer. Mass spectra (MS) were obtained with
a Varian 311A instrument.