The Journal of Organic Chemistry
Featured Article
diethyl ether). 1H, 13C, and 19F NMR characterization data match
those reported in the literature.9 HRMS ESI (m/z): [M + H]+ calcd
for C24H28FN4O2 435.2191, found 435.2190. The yield reported in
Table 5 (52%) represents an average of two runs (51 and 53%).
3-Fluoro-5-(pyridin-2-ylethynyl)benzonitrile (11-F). General pro-
cedure D was followed using 3-nitro-5-(pyridin-2-ylethynyl)-
benzonitrile (49.4 mg, 0.2 mmol, 1 equiv), D-1 (78.1 mg, 0.4 mmol,
2 equiv), and A-5 (4.3 mL of a 0.14 M solution in DMF, 3 equiv). The
reaction was heated to 80 °C for 4 h and provided 11-F as a white
solid (30.0 mg, 68% yield, Rf = 0.80 in diethyl ether, mp = 95.7−96.7
°C). 1H, 13C, and 19F NMR characterization data match those
reported in the literature.26,32 HRMS ESI (m/z): [M + H]+ calcd for
C14H8FN2 223.0666, found 223.0663. The yield reported in Table 5
(71%) represents an average of two runs (68 and 73%).
(7) Sun, H.; Koch, A. S.; DiMagno, S. G. Fluorinated Heterocycles;
American Chemical Society: Washington DC, 2009; Chapter 5, pp
85−104.
(8) Schimler, S. D.; Ryan, S. J.; Bland, D. C.; Anderson, J. E.; Sanford,
M. S. J. Org. Chem. 2015, 80, 12137.
(9) Schimler, S. D.; Cismesia, M. A.; Hanley, P. S.; Froese, R. D. J.;
Jansma, M. J.; Bland, D. C.; Sanford, M. S. J. Am. Chem. Soc. 2017, 139,
1452.
(10) Grushin, V. V.; Marshall, W. J. Organometallics 2008, 27, 4825.
(11) (a) Lawson, A. T.; Collie, N. J. J. Chem. Soc., Trans. 1888, 53,
624. (b) Dermeik, S.; Sasson, Y. J. Org. Chem. 1989, 54, 4827.
(c) Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. A. J.
Am. Chem. Soc. 1990, 112, 7619. (d) Urban, G.; Dotzer, R. Method of
̈
producing onium fluorides selected from the group consisting of
nitrogen, antimony, boron, and arsenic. Patent US3388131A1, June
11, 1968.
ASSOCIATED CONTENT
* Supporting Information
■
(12) Sharma, R. K.; Fry, J. L. J. Org. Chem. 1983, 48, 2112.
(13) (a) Sun, H.; DiMagno, S. G. Angew. Chem., Int. Ed. 2006, 45,
2720. (b) Sun, H.; DiMagno, S. G. J. Am. Chem. Soc. 2005, 127, 2050.
(c) DiMagno, S. G.; Sun, H. Anhydrous Fluoride Salts and Reagents
and Methods for Their Production. Patent US20060089514A1, April
27, 2006.
S
The Supporting Information is available free of charge on the
NMR spectral data for all new substrates and for isolated
(14) Allen, L. J.; Muhuhi, J. M.; Bland, D. C.; Merzel, R.; Sanford, M.
S. J. Org. Chem. 2014, 79, 5827.
AUTHOR INFORMATION
■
(15) (a) Eckelbarger, J. D.; Epp, J. B.; Schmitzer, P. R.; Siddall, T. L.
3-Alkenyl-6-halo-4-aminopicolinates and their use as herbicides. Patent
US20120190548A1, July 25, 2012. (b) Whiteker, G. T.; Arndt, K. E.;
Renga, J. M.; Yuanming, Z.; Lowe, C. T.; Siddall, T. L.; Podhorez, D.
E.; Roth, G. A.; West, S. P.; Arndt, C. Process for the preparation of 4-
amino-5-fluoro-3-halo-6-(substituted)picolinates. Patent
US20120190860, July 26, 2012. (c) Yerkes, C. N.; Lowe, C. T.;
Eckelbarger, J. D.; Epp, J. B.; Guenthenspberger, K. A.; Siddall, T. L.;
Schmitzer, P. R. Aryl alkyl esters of 4-amino-6-(substitutedphenyl)-4-
picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarbox-
ylates and their use as selective herbicides for crops. Patent
US20150025238A1, January 22, 2015. (d) Eckelbarger, J. D.; Epp, J.
B.; Schmitzer, P. R. 6-Amino-2-substituted-5-vinylsilylpyrimidine-4-
carboxylic acids and esters and 4-amino-6-substituted-3-vinylsilylpyr-
idine-2-carboxylic acids and esters as herbicides. Patent
US20120190549A1, July 26, 2012. (e) Epp, J. B.; Schmitzer, P. R.;
Balko, T. W.; Ruiz, J. M.; Yerkes, C. N.; Siddall, T. L.; Lo, W. C. 2-
Substituted 6-amino-5-alkyl, alkenyl or alkynyl-4-pyrimidinecarboxylic
acids and 6-substituted-4-amino-3-alkyl, alkenyl or alkynyl picolinic
acids and their use as herbicides. Patent US20090088322A1, April 2,
2009. (f) Walsh, T. A.; Hicks, G.; Honma, M.; Davies, J. P. Resistance
to auxinic herbicides. Patent US20070220629A1, September 20, 2007.
(16) Ryan, S. J.; Schimler, S. D.; Bland, D. C.; Sanford, M. S. Org.
Lett. 2015, 17, 1866.
(17) Allen, L. J.; Lee, S. H.; Cheng, Y.; Hanley, P. S.; Muhuhi, J. M.;
Kane, E.; Powers, S. L.; Anderson, J. E.; Bell, B. M.; Roth, G. A.;
Sanford, M. S.; Bland, D. C. Org. Process Res. Dev. 2014, 18, 1045.
(18) For a related approach for the nucleophilic fluorination of
phenols, see: (a) Tang, P.; Wang, W.; Ritter, T. J. Am. Chem. Soc.
2011, 133, 11482. (b) Fujimoto, T.; Becker, F.; Ritter, T. Org. Process
Res. Dev. 2014, 18, 1041. (c) Fujimoto, T.; Ritter, T. Org. Lett. 2015,
17, 544. (d) Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016,
534, 369.
(19) We cannot exclude the possibility of a covalent C−F bond
formed between C-1 and A-1 as the active fluorinating reagent.
(20) Peaks corresponding to starting material 1-Cl (m/z = 275) and
side product 1-OPh (m/z = 333) were observed by GCMS.
(21) A peak corresponding to side product 1-OAr (m/z = 361) was
observed by GCMS.
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by The Dow Chemical Company.
REFERENCES
■
(1) (a) Wang, J.; San
́
chez-Rosello,
́
M.; Acena, J. L.; del Pozo, C.;
̃
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev.
2014, 114, 2432. (b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10.
(c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc.
Rev. 2008, 37, 320. (d) Muller, K.; Faeh, C.; Diederich, F. Science
̈
2007, 317, 1881. (e) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
(f) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (g) O’Hagan, D. J.
Fluorine Chem. 2010, 131, 1071.
(2) (a) Special Issue: Fluorine in the Life Sciences ChemBioChem
2004, 5, 557−726. (b) Smart, B. E. J. Fluorine Chem. 2001, 109, 3.
(3) (a) Langlois, B.; Gilbert, L.; Forat, G. Fluorination of aromatic
compounds by halogen exchange with fluoride anions (“halex”
reaction). In Industrial Chemistry Library; Jean-Roger, D., Serge, R.,
Eds.; Elsevier: New York, 1996; pp 244−292. (b) Clark, J. H.; Wails,
D.; Bastock, T. W. Aromatic Fluorination; CRC Press: Boca Raton, FL,
1996. (c) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme,
M.; Paquin, J.-F. Chem. Rev. 2015, 115, 9073.
(4) (a) Kuduk, S. D.; DiPardo, R. M.; Bock, M. G. Org. Lett. 2005, 7,
577. (b) Boechat, N.; Clark, J. H. J. Chem. Soc., Chem. Commun. 1993,
921. (c) Adams, D. J.; Clark, J. H.; McFarland, H. J. Fluorine Chem.
1998, 92, 127. (d) Clark, J. H.; Wails, D. J. Fluorine Chem. 1995, 70,
201. (e) Clark, J. H.; Wails, D. Tetrahedron Lett. 1993, 34, 3901.
(f) Clark, J. H.; Wails, D.; Jones, C. W.; Smith, H.; Boechat, N.; Mayer,
L. U.; Mendonca, J. S. J. Chem. Res. 1994, 478. (g) Adams, D. J.; Clark,
J. H.; Nightingale, D. J. Tetrahedron 1999, 55, 7725. (h) Adams, D. J.;
Clark, J. H.; McFarland, H.; Nightingale, D. J. J. Fluorine Chem. 1999,
94, 51. (i) Maggini, M.; Passudetti, M.; Gonzales-Trueba, G.; Prato,
M.; Quintily, U.; Scorrano, G. J. Org. Chem. 1991, 56, 6406.
(5) Adams, D. J.; Clark, J. H. Chem. Soc. Rev. 1999, 28, 225.
(6) (a) Wynn, D. A.; Roth, M. M.; Pollard, B. D. Talanta 1984, 31,
1036. (b) Vlasov, V.-M. J. Fluorine Chem. 1993, 61, 193.
(22) A similar arylsulfonyl fluoride has been reported in the
deoxyfluorination of alcohols. See: Nielsen, M. K.; Ugaz, C. R.; Li, W.;
Doyle, A. G. J. Am. Chem. Soc. 2015, 137, 9571.
(23) Peaks corresponding to both 2,6-dimethylphenyl sulfurofluor-
idate (m/z = 204) and bis(2,6-dimethylphenyl) sulfate (m/z = 306)
byproducts from the reaction of D-1 and A-5 were observed by
F
J. Org. Chem. XXXX, XXX, XXX−XXX