2744
I. S a´ nchez-Medina et al. / Carbohydrate Research 342 (2007) 2735–2744
against tap water, and lyophilized. The obtained mate-
rial was subsequently hydrolyzed (0.5 M TFA; 30 min,
References
1
2
3
4
5
6
. De Vuyst, L.; Degeest, B. FEMS Microbiol. Rev. 1999, 23,
8
0 ꢁC), and the progress of the hydrolysis was moni-
1
53–177.
. Laws, A. P.; Gu, Y.; Marshall, V. M. Biotechnol. Adv.
001, 19, 597–625.
. Uemura, J.; Itoh, T.; Kaneko, T.; Noda, K. Milchwis-
senschaft 1998, 53, 443–446.
. Grobben, G. J.; Smith, M. R.; Sikkema, J.; de Bont, J. A.
M. Appl. Microbiol. Biotechnol. 1996, 46, 279–284.
. Faber, E. J.; Kamerling, J. P.; Vliegenthart, J. F. G.
Carbohydr. Res. 2001, 331, 183–194.
. Harding, L. P.; Marshall, V. M.; Hernandez, Y.; Gu, Y.;
Maqsood, M.; McLay, N.; Laws, A. P. Carbohydr. Res.
tored by TLC (Merck Kieselgel 60 F254 sheets; 2:1:1
n-butanol–acetic acid–water; orcinol/sulfuric acid stain-
ing). After concentration, the residue was fractionated
on a Bio-Gel P-2 column (60 · 1.5 cm), eluted with
2
1
0 mM NH HCO at a flow rate of 3 mL/min at room
4 3
temperature, while monitored by differential refraction
index detection. The sugar-containing fraction was
lyophilized. A part of the material was directly used
for structural analysis. The other part was reduced with
2
005, 340, 1107–1111.
NaBH (2 h; 20 ꢁC), neutralized with 4 M HOAc, and
4
7
8
9
. Cerning, J.; Bouillanne, C.; Desmazeaud, M. J.; Landon,
M. Biotechnol. Lett. 1986, 8, 625–628.
. Grobben, G. J.; Sikkema, J.; Smith, M. R.; de Bont, J. A.
M. J. Appl. Bacteriol. 1995, 79, 103–107.
. Gruter, M.; Leeflang, B. R.; Kuiper, J.; Kamerling, J. P.;
Vliegenthart, J. F. G. Carbohydr. Res. 1993, 239, 209–226.
purified by Bio-Gel P-2.
3
.7. NMR spectroscopy
Resolution-enhanced 1D/2D 500-MHz NMR spectra
1
0. Harding, L. P.; Marshall, V. M.; Elvin, M.; Gu, Y.; Laws,
were recorded in D O on a Bruker DRX-500 spectro-
A. P. Carbohydr. Res. 2003, 338, 61–67.
2
meter (Bijvoet Center, Department of NMR Spectro-
11. Chaplin, M. F.; Kennedy, J. F. Carbohydrate Analysis, a
Practical Approach; IRL Press: Oxford, 1986, pp 71–75
and references cited therein.
scopy) at
oligosaccharides and 78 ꢁC for the polysaccharide. Prior
to analysis, samples were exchanged twice in D O
a
probe temperature of 27 ꢁC for
1
2. Faber, E. J.; van den Haak, M. J.; Kamerling, J. P.;
2
Vliegenthart, J. F. G. Carbohydr. Res. 2001, 331, 173–182.
(
99.9 at % D, Cambridge Isotope Laboratories, Inc.,
13. Bock, K.; Pedersen, C. J. Chem. Soc., Perkin Trans. 2
1974, 293–297.
Andover, MA) with intermediate lyophilization, and
then dissolved in 0.6 mL D O. Chemical shifts are
expressed in parts per million by reference to internal
acetone (d 2.225) for H and/or to the a-anomeric signal
1
4. Bock, K.; Pedersen, C. Adv. Carbohydr. Chem. Biochem.
983, 41, 27–66.
2
1
1
5. Faber, E. J.; Zoon, P.; Kamerling, J. P.; Vliegenthart, J. F.
1
G. Carbohydr. Res. 1998, 310, 269–276.
16. Van Casteren, W. H. M.; Dijkema, C.; Schols, H. A.;
1
3
13
of external [1- C]glucose (d
92.9) for C. Suppres-
C-1
sion of the HOD signal was achieved by applying a
Beldman, G.; Voragen, A. G. J. Carbohydr. Res. 2000,
2
6
3
24, 170–181.
7. Bock, K.; Thøgersen, H. Annu. Rep. NMR Spectrosc.
982, 13, 1–57.
WEFT pulse sequence for 1D experiments and by a
pre-saturation of 1 s during the relaxation delay for
1
1
1
2
7
2
D experiments. 2D TOCSY spectra were recorded
8. Bubb, W. A.; Urashima, T.; Fujiwara, R.; Shinnai, T.;
Ariga, H. Carbohydr. Res. 1997, 301, 41–50.
19. Lemoine, J.; Chirat, F.; Wieruszeski, J.-M.; Strecker, G.;
2
8
using an MLEV-17 mixing sequence with spin-lock
times of 40–100 ms. 2D ROESY experiments were
performed at a mixing time of 300 ms for the oligosac-
charide; 2D NOESY experiments were performed with
a mixing time of 150 ms for the polysaccharide. Natural
Favre, N.; Neeser, J.-R. Appl. Environ. Microbiol. 1997,
6
3, 3512–3518.
2
0. Low, D.; Ahlgren, J. A.; Horne, D.; McManon, D. J.;
Oberg, C. J.; Broadbent, J. R. Appl. Environm. Microbiol.
1998, 64, 2147–2151.
1
13
abundance 2D H– C HSQC and HMBC experiments
were recorded with and without decoupling, respec-
21. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.;
1
Smith, F. Anal. Chem. 1956, 28, 350–356.
tively, during acquisition of the H FID. Resolution
2
2. Kamerling, J. P.; Vliegenthart, J. F. G. Carbohydrates. In
Mass Spectrometry; Lawson, A. M., Ed.; Clinical Bio-
chemistry—Principles, Methods, Applications; Walter de
Gruyter: Berlin, 1989; Vol. 1, pp 175–263.
enhancement of the spectra was performed by a
Lorentzian-to-Gaussian transformation or by multipli-
cation with a squared-bell function phase shifted by
p/(2.3) for 2D spectra, and when necessary, a fifth order
polynomial baseline correction was performed. All
NMR data were processed using in-house developed
software (J. A. van Kuik, Bijvoet Center, Utrecht
University).
23. Gerwig, G. J.; Kamerling, J. P.; Vliegenthart, J. F. G.
Carbohydr Res. 1978, 62, 349–357.
4. Gerwig, G. J.; Kamerling, J. P.; Vliegenthart, J. F. G.
Carbohydr. Res. 1979, 77, 1–7.
5. Ciucanu, I.; Kerek, F. Carbohydr. Res. 1984, 131, 209–217.
26. H a˚ rd, K.; van Zadelhoff, G.; Moonen, P.; Kamerling, J. P.;
2
2
Vliegenthart, J. F. G. Eur. J. Biochem. 1992, 209, 895–915.
2
7. H a˚ rd, K.; Vliegenthart, J. F. G. Nuclear Magnetic
Resonance Spectroscopy of Glycoprotein-Derived Carbo-
hydrate Chains. In Glycobiology, a Practical Approach;
Fukuda, M., Kobata, A., Eds.; Oxford University Press:
Oxford, 1993; pp 223–242.
Acknowledgment
The authors thank Dr. Bas R. Leeflang for assistance
with the use of the NMR spectrometer.
28. Bax, A.; Davies, D. G. J. Magn. Reson. 1985, 65, 355–360.