Chemical Research in Toxicology
29) Hawkins, C. L., and Davies, M. J. (2005) The role of reactive
N-bromo species and radical intermediates in hypobromous acid-
induced protein oxidation. Free Radical Biol. Med. 39, 900–912.
ARTICLE
(
Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin,
K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K.,
Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N.,
Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C.,
Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J.,
Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K.,
Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich,
(
30) Lind, J., Shen, X., Eriksen, T. E., Merenyi, G., and Eberson, L.
1991) One-electron reduction of N-bromosuccinimide. Rapid expul-
sion of a bromine atom. J. Am. Chem. Soc. 113, 4629–4633.
31) Baumgartner, M. T., and Foray, S. G. (2003) A theoretical study
(
(
€
of nitrogen radicals. Generation, reactivity and selectivity in electron
S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J.,
transfer reactions. J. Mol. Struct. (Theochem) 633, 7–14.
and Fox, D. J. (2009) Gaussian 09, revision A.02, Gaussian, Inc.,
(32) Peskin, A. V., and Winterbourn, C. C. (2001) Kinetics of the
Wallingford, CT.
reactions of hypochlorous acid and amino acid chloramines with thiols,
methionine, and ascorbate. Free Radical Biol. Med. 30, 572–579.
(46) Curtiss, L. A., Redfern, P. C., and Raghavachari, K. (2007)
Gaussian-4 theory. J. Chem. Phys. 126, 084108.
(
33) Prutz, W. A. (1999) Consecutive halogen transfer between
(47) Merrick, J. P., Moran, D., and Radom, L. (2007) An evaluation
of harmonic vibrational frequency scale factors. J. Phys. Chem. A
111, 11683–11700.
various functional groups induced by reaction of hypohalous acids:
NADH oxidation by halogenated amide groups. Arch. Biochem. Biophys.
3
71, 107–114.
34) Fridovich, I. (1995) Superoxide radical and superoxide dismu-
tases. Annu. Rev. Biochem. 64, 97–112.
35) Morris, J. C. (1966) The acid ionization constant of HOCl from
to 35 °C. J. Phys. Chem. 70, 3798–3805.
36) Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A.,
(48) Barone, V., and Cossi, M. (1998) Quantum calculation of
molecular energies and energy gradients in solution by a conductor
solvent model. J. Phys. Chem. A 102, 1995–2001.
(49) Cossi, M., Rega, N., Scalmani, G., and Barone, V. (2003)
Energies, structures, and electronic properties of molecules in solution
with the C-PCM solvation model. J. Comput. Chem. 24, 669–681.
(50) Takano, Y., and Houk, K. N. (2005) Benchmarking the
conductor-like polarizable continuum model (CPCM) for aqueous
solvation free energies of neutral and ionic organic molecules. J. Chem.
Theory Comput. 1, 70–77.
(
(
5
(
Simeon-Rudolf, V., and Reiner, E. (2003) Molar absorption coefficients
for the reduced Ellman reagent: reassessment. Anal. Biochem. 312, 224–
227.
(
37) Pattison, D. I., Davies, M. J., and Asmus, K.-D. (2002) Absolute
rate constants for the formation of nitrogen-centred radicals from
chloramines/amides and their reactions with antioxidants. J. Chem.
Soc., Perkin Trans. 2, 1461–1467.
(51) Reiss, H., and Heller, A. (1985) The absolute potential of the
standard hydrogen electrode - a new estimate. J. Phys. Chem. 89, 4207–
4213.
(
38) Anderson, R. F., Denny, W. A., Li, W., Packer, J. E., Tercel, M.,
(52) Thomas, E. L., Bozeman, P. M., Jefferson, M. M., and King,
C. C. (1995) Oxidation of bromide by the human leukocyte enzymes
myeloperoxidase and eosinophil peroxidase. Formation of bromamines.
J. Biol. Chem. 270, 2906–2913.
and Wilson, W. R. (1997) Pulse radiolysis studies on the fragmentation
of arylmethyl quaternary nitrogen mustards by one-electron reduction in
aqueous solution. J. Phys. Chem. A 101, 9704–9709.
(
39) Mulazzani, Q. G., Dangelantonio, M., Venturi, M., Hoffman,
(53) Buxton, G. V., and Sellers, R. M. (1973) Acid dissociation
constant of the carboxyl radical. Pulse radiolysis studies of aqueous
solutions of formic acid and sodium formate. J. Chem. Soc., Faraday
Trans. 1 69, 555–559.
M. Z., and Rodgers, M. A. J. (1986) Interaction of formate and oxalate
ions with radiation-generated radicals in aqueous solution - methylviolo-
gen as a mechanistic probe. J. Phys. Chem. 90, 5347–5352.
(
40) Kettle, A. J., Anderson, R. F., Hampton, M. B., and Winter-
(54) Neta, P., Simic, M., and Hayon, E. (1969) Pulse radiolysis of
aliphatic acids in aqueous solutions. I. Simple monocarboxylic acids. J.
Phys. Chem. 73, 4207–4213.
bourn, C. C. (2007) Reactions of superoxide with myeloperoxidase.
Biochemistry 46, 4888–4897.
(
41) Hehre, W. J., Radom, L., Schleyer, P. v. R., and Pople, J. A.
1986) Ab Initio Molecular Orbital Theory, Wiley, New York.
42) Jensen, F. (2006) Introduction to Computational Chemistry, 2nd
ed., Wiley, Chichester.
43) Koch, W., and Holthausen, M. C. (2001) A Chemist’s Guide to
Density Functional Theory, 2nd ed., Wiley-VCH, New York.
44) Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E.,
(55) Lind, J., Jonsson, M., Eriksen, T. E., Merenyi, G., and Eberson,
L. (1993) One-electron reduction potential and ring opening of the
succinimidyl radical in water. J. Phys. Chem. 97, 1610–1614.
(56) Johnson, H. D., Cooper, W. J., Mezyk, S. P., and Bartels, D. M.
(2002) Free radical reactions of monochloramine and hydroxylamine in
aqueous solution. Radiat. Phys. Chem. 65, 317–326.
(57) Poskrebyshev, G. A., Huie, R. E., and Neta, P. (2003) Radiolytic
reactions of monochloramine in aqueous solutions. J. Phys. Chem. A
107, 7423–7428.
(58) Canle, M. L., Santaballa, J. A., and Steenken, S. (1999) Photo-
and radiation-chemical generation and thermodynamic properties of the
aminium and aminyl radicals derived from N-Phenylglycine and (N-
Chloro,N-phenyl) glycine in aqueous solution: evidence for a new
photoionization mechanism for aromatic amines. Chem.—Eur. J.
5, 1192–1201.
(59) Hayon, E., and Simic, M. (1971) Pulse radiolysis study of cyclic
peptides in aqueous solution. Absorption spectrum of the peptide radical
-NHCHCO-. J. Am. Chem. Soc. 93, 6781–6786.
(
(
(
(
Robb, M. A., Cheeseman, J. R., Montgomery, J., J., A., Vreven, T., Kudin,
K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V.,
Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A.,
Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa,
J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li,
X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C.,
Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J.,
Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K.,
Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich,
S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D.,
Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G.,
Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz,
P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A.,
Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson,
B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. (2004)
Gaussian 03, revision E.02, Gaussian, Inc., Wallingford, CT.
(60) Radisic, D., Xu, S. J., and Bowen, K. H. (2002) Photoelectron
-
-
spectroscopy of the anions, CH NH and (CH ) N and the anion
3
3 2
-
-
complexes, H (CH
3
NH
2
3 2 3 2
) and (CH ) N [(CH ) NH)]. Chem. Phys.
Lett. 354, 9–13.
(61) Wickham-Jones, C. T., Ervin, K. M., Ellison, G. B., and
Lineberger, W. C. (1989) NH2 electron affinity. J. Chem. Phys.
91, 2762–2763.
(45) Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E.,
Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B.,
Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P.,
Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara,
M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T.,
Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J., J., A.,
(62) Ervin, K. M., Anusiewicz, W., Skurski, P., Simons, J., and
-
2
Lineberger, W. C. (2003) The only stable state of O
2
is the X Π
g
ground state and it (still!) has an adiabatic electron detachment energy
of 0.45 eV. J. Phys. Chem. A 107, 8521–8529.
3
81
dx.doi.org/10.1021/tx100325z |Chem. Res. Toxicol. 2011, 24, 371–382