Table 1 Selected crystal data for 1 and its inclusion compounds with N2, CO2, Ar and SO2
CO-crystal form
Crystal data
Pure 1
N2 (1a)
CO2 (1b)
Ar (1g)
SO2 (1d)
Crystal System
Space Group
a (Å)
b (Å)
c (Å)
a (°)
b (°)
g (°)
V (Å3)
Z
Triclinic
P1
10.6611(6)
11.6471(5)
16.0947(5)
75.318(3)
79.351(3)
89.511(2)
Orthorhombic
Pbcn
17.1674(8)
23.2395(11)
10.6653(4)
90
90
90
4255.0(3)
16
Orthorhombic
Pbcn
17.1277(7)
23.2356(10)
10.6532(2)
90
90
90
4239.7(3)
16
Orthorhombic
Pbcn
17.1483(6)
23.2411(8)
10.6610(2)
90
90
90
4248.9(2)
16
Orthorhombic
Pbcn
17.1333(2)
23.2358(3)
10.6538(4)
90
90
90
4241.3(1)
16
¯
1898.4(2)
8
Data in common: T = 180(2) K
Notes and references
§ Synthesis of 1: LiN(SiMe3)2 (0.888g, 5.307 mmol) and CF3C6H3FCN
(0.949g, 5.158 mmol) were stirred in Et2O (30 ml) for 18 h, to yield a dark
brown solution. The solution was cooled to 0 °C and SCl2 (1.2 ml, 12.7
mmol) added slowly with stirring to yield an immediate orange precipitate.
The solution was stirred for 1 h, filtered washed with Et2O (2 3 20 ml) and
dried in vacuo. Zn/Cu couple (0.054 g, 0.828 mmol) was added to a
suspension of the orange precipitate (0.500 g, 1.653 mmol) in SO2 in a two-
limbed reaction vessel. The solution was stirred for 18 h, filtered, the solvent
removed and the solid sublimed in a static vacuum (1022 Torr, 150–50 °C)
to yield 1. Found: C 35.83, H 1.11, N 10.58; required for C8H3N2S2F4
C
35.96, H 1.12, N 10.49%. +EI-MS: 267.0 (M+) (100%), 221.0 (M+ 2 SN,
36%), 205.2 (C6H3CF3FCN2H2)+ (39%), 189.0 (M+ 2 SNS,19%), 170.0
(C6H3CF3CN+, 22%), 163.0 (C6H3FCF3+, 13%); ESR (290 K, THF) g =
2.010, aN = 4.9 G. Crystals of the inclusion complexes, 1a–1d were grown
1
Fig. 2 Space filling diagrams of (a) the close-packed structure of 1 and (b)
the channel-like structure of 1a.
by sublimation of crude 1 in a sealed tube in the presence of ca. 3 atm of N2,
CO2, Ar or SO2 respectively. Recovered yields typically ca. 65 mg, 5%.
¶ Crystal data for 1: C8H3F4N2S2, M = 267.24, Z = 8, m(Mo-Ka) = 0.591
mm21, 15483 reflections of which all 6425 unique data were used in
calculations (Rint = 0.0494). R1 = 0.0471 (I > 2s(I)), wR2 = 0.1626 (all
data), S = 1.05. Crystal data for 1a: C8H3F4N2S2 · 0.54 N2, M = 282.37,
Z = 16, m(Mo-Ka) = 0.528 mm21, 15146 reflections of which all 3736
unique data were used in calculations (Rint = 0.0684). R1 = 0.0498 (I >
2s(I)), wR2 = 0.1360 (all data), S = 0.95. Crystal data for 1b, 1g and 1d are
available as ESI †
absorptions characteristic7 of released SO2, indicating a dy-
namic diffusion process at room temperature. TGA studies on
1b and 1g indicated a mass loss of ca. 5% and 6% respectively
on heating above 60 °C, consistent with loss of CO2 and Ar.
These values are in reasonable agreement with the values
estimated from the X-ray data (5.9 and 9.4% for CO2 and Ar
respectively) although these values are likely to be approximate
(since partial replacement of guest molecules by N2 is likely to
occur during storage due to the dynamic nature of the inclusion
process).
In contrast, sublimation of 1 in a partial atmosphere of
oxygen resulted in the formation of the dithiatetrazocine, 2, as
a yellow solid. The structure of 2 was elucidated by mass
spectrometry, UV/vis spectrophotometry, and X-ray diffrac-
tion. Previous work by Boeré and co-workers have shown that
dithiadiazolyl radicals react with dioxygen in acetonitrile to
generate dithiatetrazocines.8
1 A. J. Banister, A. S. Batsanov, O. G. Dawe, P. L. Herbertson, J. A. K.
Howard, S. Lynn, I. May, J. N . B. Smith, J. M. Rawson, T. E. Rogers, B.
K. Tanner and G. Antorrena and F. Palacio, J. Chem. Soc., Dalton Trans.,
1997, 2539; L. Beer, A. W. Cordes, D. J. T. Myles, R. T. Oakley and N.
T. Taylor, Cryst. Eng. Commun., 2000, 20.
2 A. J. Banister, N. Bricklebank, W. Clegg, M. R. J. Elsegood, C. I.
Gregory, I. Lavender, J. M. Rawson and B. K. Tanner, J. Chem. Soc.,
Chem. Commun., 1995, 679; A. J. Banister, N. Bricklebank, I. Lavender,
J. M. Rawson, C. I. Gregory, B. K. Tanner, W. Clegg, M. R. J. Elsegood
and F. Palacio, Angew. Chem., Int. Ed. Engl., 1996, 35, 2533; G.
Antorrena, J. E. Davies, M. Hartley, F. Palacio, J. M. Rawson, J. N. B.
Smith and A. Steiner, Chem. Commun., 1999, 1393.
3 J. M. Rawson, A. J. Banister and I. Lavender, Adv. Heterocycl. Chem.,
1995, 62, 137.
4 H.-U. Höfs, J. W. Bats, R. Gleiter, G. Hartmann, R. Mews, M. Eckert-
Maksic, H. Oberhammer and G. M. Sheldrick, Chem. Ber., 1985, 118,
3781.
5 S. Brownridge, H. Du, S. A. Fairhurst, R. C. Haddon, H. Oberhammer, S.
Parsons, J. Passmore, M. J. Schriver, L. H. Sutcliffe and N. P. C.
Westwood, J. Chem. Soc., Dalton Trans., 2000, 3365; H. Du, R. C.
Haddon, I. Krossing, J. Passmore, J. M. Rawson and M. J. Schriver,
Chem. Commun., 2002, 1836.
6 P. v. d. Sluis and A. L. Spek, Acta Crystallogr., 1990, A46, 194;
implemented as the SQUEEZE procedure in PLATON, A Multipurpose
Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, A.
L. Spek, 1998.
7 Fundamentals of Molecular Spectroscopy, C. N. Banwell, 3rd Edition,
McGraw-Hill, Maidenhead, England, 1983.
8 R. T. Boeré, K. H. Moock, S. Derrick, W. Hoogerdijk, K. Preuss, J. Yip
and M. Parvez, Can. J. Chem., 1993, 71, 473.
Inclusion of guest molecules into the structures of dithiadia-
zolyl radicals is not without precedent; the prototypal radical
HCNSSN forms an inclusion complex with N2 although this
occurs via rearrangement of the molecules within layers9 rather
than between layers as in 1. It is likely that in both cases
inclusion allows a novel host structure to be adopted which,
although no longer close-packed, optimizes host-packing.
We are currently pursuing the size and chemical selectivity of
1 for other gases including hydrogen and methane, and
examining the dynamics of the inclusion process.
We would like to thank the Cambridge Commonwealth Trust
and the Cecil Renaud Trust (D.A.H), the EPSRC (A.D.B.) and
NERC (C.S.C.) for financial support. We would also like to
thank Prof. C.T. Imrie (University of Aberdeen) for TGA
measurements.
9 C. D. Bryan, A. W. Cordes, R. C. Haddon, R. G. Hicks, D. K. Kennepohl,
C. D. MacKinnon, R. T. Oakley, T. T. M. Palstra, A. S. Perel, S. R. Scott,
L. F. Scneemeyer and J. V. Waszczak, J. Am. Chem. Soc., 1994, 116,
1205.
CHEM. COMMUN., 2003, 2774–2775
2775