10.1002/anie.201813585
Angewandte Chemie International Edition
Okamoto, T. Hayashi, J. Am. Chem. Soc. 2005, 127, 2872; d) H.
Yamabe, A. Mizuno, H. Kusama, N. Iwasawa, J. Am. Chem. Soc.
2005, 127, 3248; e) R. Shintani, K. Yashio, T. Nakamura, K. Okamoto,
T. Shimada, T. Hayashi, J. Am. Chem. Soc. 2006, 128, 2772; f) R.
Shintani, S. Isobe, M. Takeda, T. Hayashi, Angew. Chem. Int. Ed.
2010, 49, 3795; Angew. Chem. 2010, 122, 3883; g) M. Onoe, K. Baba,
Y. Kim, Y. Kita, M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2012, 134,
19477.
1,4-addition step makes the whole reaction process move towards
this direction. These results indicate that, unlike the previous
thermodynamically favored vinyl to aryl 1,4-rhodium migration,[4]
the current process is kinetically controlled, which is in accordance
with the basic hypothesis assumed above. This mechanism also
illuminates for the explanation of similar aryl to vinyl 1,4-palladium
migration/cross-coupling sequences.[14]
[9] For selected examples on alkyl to aryl 1,4-rhodium(I) migration, see: a)
T. Matsuda, M. Shigeno, M. Murakami, J. Am. Chem. Soc. 2007, 129,
12086; b) F. Menard, M. Lautens, Angew. Chem. Int. Ed. 2008, 47,
2085; Angew. Chem. 2008, 120, 2115; c) T. Seiser, O. A. Roth, N.
Cramer, Angew. Chem. Int. Ed. 2009, 48, 6320; Angew. Chem. 2009,
121, 6438; d) T. Seiser, N. Cramer, Angew. Chem. Int. Ed. 2010, 49,
10163; Angew. Chem. 2010, 122, 10361; e) R. Shintani, R. Iino, K.
Nozaki, J. Am. Chem. Soc. 2014, 136, 7849; f) T. Sawano, M.
Hashizume, S. Nishimoto, K. Ou, T. Nishimura, Org. Lett. 2015, 17,
2630.
[10] For examples on vinyl to allyl 1,4-rhodium(I) migration, see: a) M.
Callingham, B. M. Partridge, W. Lewis, H. W. Lam, Angew. Chem.
Int. Ed. 2017, 56, 16352; Angew. Chem. 2017, 129, 16570; b) B. M.
Partridge, M. Callingham, W. Lewis, H. W. Lam, Angew. Chem. Int.
Ed. 2017, 56, 7227; Angew. Chem. 2017, 129, 7333.
In conclusion, we have reported an asymmetric rhodium-
catalyzed alkenylation of enones and imines with arylboronic acids.
A highly efficient aryl to vinyl 1,4-rhodium migration is the key to
success, providing
a new mode to generate stereodefined
vinylrhodium species. Both diene and bis-phosphine ligands proved
to be competent to promote this rhodium migration sequence, and
excellent enantioselectivities were also obtained with the
corresponding chiral ligands. DFT calculations revealed that the
excellent migration efficiency is attributed to a kinetically favored
process. Further application this unique 1,4-rhodium migration
strategy in other transformations is ongoing.
[11] For examples on 1,3- or 1,5-rhodium(I) migration, see: a) J. Zhang, J.
-F. Liu, A. Ugrinov, A. F. X. Pillai, Z. -M. Sun, P. Zhao, J. Am. Chem.
Soc. 2013, 135, 17270; b) A. Masarwa, M. Weber, R. Sarpong, J. Am.
Chem. Soc. 2015, 137, 6327; c) M. Tobisu, J. Hasegawa, Y. Kita, H.
Kinuta, N. Chatani, Chem. Commun. 2012, 48, 11437; d) N. Ishida, Y.
Shimamoto, T. Yano, M. Murakami, J. Am. Chem. Soc. 2013, 135,
19103.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: asymmetric catalysis · rhodium· alkenylation · C-H
functionalization · metal migration
[12] For selected examples on 1,4-rhodium(III) migration, see: a) D. J.
Burns, H. W. Lam, Angew. Chem. Int. Ed. 2014, 53, 9931; Angew.
Chem. 2014, 126, 10089; b) S. Guo, K. Yuan, M. Gu, A. Lin, H. Yao,
Org. Lett. 2016, 18, 5236; c) S. E. Korkis, D. J. Burns, H. W. Lam, J.
Am. Chem. Soc. 2016, 138, 12252.
[13] For aryl to vinyl 1,4-rhodium migration in complex research, see: Y.
Ikeda, K. Takano, M. Waragai, S. J. Kodama, N. Tsuchida, K. Takano,
Y. Ishii, Organometallics 2014, 33, 2142.
[14] a) T.-J. Hu, G. Zhang, Y.-H. Chen, C.-G. Feng, G.-Q. Lin, J. Am.
Chem. Soc. 2016, 138, 2897; b) T. -J. Hu, M. -Y. Li, Q. Zhao, C. -G.
Feng, G. -Q. Lin, Angew. Chem. Int. Ed. 2018, 57, 5871; Angew.
Chem. 2018, 130, 5973.
[15] a) J. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507; b) S. H.
Wiedemann, J. C. Lewis, J. A. Ellman, R. G. Bergman, J. Am. Chem.
Soc. 2006, 128, 2452; c) D. A. Colby, R. G. Bergman, J. A. Ellman, J.
Am. Chem. Soc. 2008, 130, 3645.
[1] For reviews, see: a) K. Fagnou, M. Lautens, Chem. Rev. 2003, 103,
169; b) T. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829; c) H. J.
Edwards, J. D. Hargrave, S. D. Penrose, C. G. Frost, Chem. Soc. Rev.
2010, 39, 2093; d) C. S. Marques, A. J. Burke, ChemCatChem 2011, 3,
635; e) P. Tian, H.-Q. Dong, G.-Q. Lin, ACS Catal. 2012, 2, 95; f) M.
Jean, B. Casanova, S. Gnoatto, P. van de Weghe, Org. Biomol. Chem.
2015, 13, 9168; g) M. M. Heravi, M. Dehghani, V. Zadsirjan,
Tetrahedron:Asymmetry 2016, 27, 513.
[2] For selected examples, see: addition to C=C bonds: a) A. Duursma, J.
-G. Boiteau, L. Lefort, J. A. F. Boogers, A. H. M. de Vries, J. G. de
Vries, A. J. Minnaard, B. L. Feringa, J. Org. Chem. 2004, 69, 8045; b)
G. Lalic, E. J. Corey, Tetrahedron Lett. 2008, 49, 4894; c) H. -J. Yu,
C. Shao, Z. Cui, C. -G. Feng, G. -Q. Lin, Chem. Eur. J. 2012, 18,
13274; addition to C=N bonds: d) Y. Luo, A. J. Carnell, H. W. Lam,
Angew. Chem. Int. Ed. 2012, 51, 6762; Angew. Chem. 2012, 124,
6866; e) Z. Cui, Y. -J. Chen, W. -Y. Gao, C. -G. Feng, G. -Q. Lin, Org.
Lett. 2014, 16, 1016; f) Y. Wang, Y. Liu, D. Zhang, H. Wei, M. Shi, F.
Wang, Angew. Chem. Int. Ed. 2016, 55, 3776; Angew. Chem. 2016,
128, 3840; g) X. -W. Qian, Z. -J. Xue, Q. Zhao, Z. Cui, Y. -J. Chen, C.
-G. Feng, G. -Q. Lin, Org. Lett. 2017, 19, 5601.
[16] a) Z. -Q. Wang, C. -G. Feng, M. -H. Xu, G. -Q. Lin, J. Am. Chem. Soc.
2007, 129, 5336; b) S. Helbig, S. Sauer, N. Cramer, S. Laschat, A.
Baro, W. Frey, Adv. Synth. Catal. 2007, 349, 2331.
[17] C.-G. Feng, Z.-Q. Wang, C. Shao, M.-H. Xu, G.-Q. Lin, Org. Lett.
2008, 10, 4101.
[18] K. Okamoto, T. Hayashi, V. H. Rawal, Chem. Commun. 2009, 4815.
[19] Boronic Acids: Preparation and Applications in Organic Synthesis,
Medicine, and Materials, 2nd ed. (Ed: D. G. Hall), Wiley-VCH,
Weinheim, 2011.
[20] CCDC 1876119 (7c) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
[3] a) M. Daini, A. Yamamoto, M. Suginome, J. Am. Chem. Soc. 2008,
130, 2918; b) C. Wang, Z. Xu, T. Tobrman, E. I. Negishi, Adv. Synth.
Catal. 2010, 352, 627; c) R. Alfaro, A. Parra, J. Alemán, J. L. G.
Ruano, M. Tortosa, J. Am. Chem. Soc. 2012, 134, 15165; d) H.
Yoshida, I. Kageyuki, K. Takaki, Org. Lett. 2013, 15, 952; e) T. -J. Hu,
G. Zhang, Y. -H. Chen, C. -G. Feng, G. -Q. Lin, J. Am. Chem. Soc.
2016, 138, 2897.
[4] K. Sasaki, T. Nishimura, R. Shintani, E. A. B. Kantchev, T. Hayashi,
Chem. Sci. 2012, 3, 1278.
[5] H. B. Hepburn, H. W. Lam, Angew. Chem. Int. Ed. 2014, 53, 11605;
Angew. Chem. 2014, 126, 11789.
Cambridge
Crystallographic
Data
Centre
via
www.ccdc.cam.ac.uk/data_request/cif..
[21] Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai, N. Miyaura, J. Am.
Chem. Soc. 1998, 120, 5579.
[22] See the Supporting Information for computational details.
[23] D. V. Partyka, Chem. Rev. 2011, 111, 1529.
[6] K. Oguma, M. Miura, T. Satoh, M. Nomura, J. Am. Chem. Soc. 2000,
122, 10464.
[7] For reviews , see: a) S. Ma, Z. Gu, Angew. Chem. Int. Ed. 2005, 44,
7512; Angew. Chem. 2005, 117, 7680; b) F. Shi, R. C. Larock, Top.
Curr. Chem. 2010, 292, 123.
[8] For selected examples on vinyl to aryl 1,4-rhodium(I) migration, see:
a) T. Hayashi, K. Inoue, N. Taniguchi, M. Ogasawara, J. Am. Chem.
Soc. 2001, 123, 9918; b) T. Miura, T. Sasaki, H. Nakazawa, M.
Murakami, J. Am. Chem. Soc. 2005, 127, 1390; c) R. Shintani, K.
4
This article is protected by copyright. All rights reserved.