C O M M U N I C A T I O N S
Table 1. Photophysical Properties of Iridium Complexes
Emission
solution
λ
max (nm)
film
HOMO (eV)
Φp
∆E
LUMO (eV)a
FIrpic
FIrmpic
FIrqnd
FIrpca
FIriq
FIrprz
FIrprza
FIrqnx
468, 494
478, 504
573
574
581
587
621
666
474, 500
479, 501
551
484, 504
539, 565
554, 564
554, 569
615
5.8
5.9
5.9
5.8
5.8
5.9
5.8
5.8
0.42
0.31
0.35
0.04
0.27
0.31
0.03
0.39
0.000
0.000
-0.048
-0.181
-0.196
-0.466
-0.694
-0.801
Figure 2. (a) A suggested mechanism of color tuning invoked by the inter-
ligand energy transfer (ILET) to ancillary ligand. HOMO (left) and LUMO
(right) of (b) FIrmpic and (c) FIriq calculated with BLYP functional and
DNP basis set under effective core potential.
a Calculated LUMO energy difference relative to FIrmpic.
energies of Type II ancillary ligands are all lower than that of
FIrmpic (Type I) and are well correlated with the changes in
emission wavelength. Furthermore, DFT calculations show that the
LUMO of FIrmpic (Type I) locates largely on the dfppy ligand,
while that of FIriq (Type II) locates on the isoquinolinate ligand
exclusively (see Figure 2). Therefore, tunable emission via the
ILET-to-LX3 scheme and possible solvatochromism of Type II
complexes are consistently explained.
In conclusion, we have successfully demonstrated and elucidated
the broad range color tuning of heteroleptic iridium complexes via
relative energy level (LX3) control of the ancillary ligand.
Figure 1. (a) Emission spectra (black for 1.0 × 10-5 M in CH2Cl2 solution
and gray for PMMA film) of FIrmpic (Type I), (b) emission spectra (black
for 1.0 × 10-5 M in MeCN solution and gray for PMMA film) of FIrqnx
(Type II), and (c) a plot of absorption and emission maxima of FIrmpic
(Type I, blue) and FIrqnx (Type II, red) as a function of solvent polarity
parameter; n and ꢀ are the refractive index and dielectric constant of solvent,
respectively.
Acknowledgment. This work was supported by the Ministry
of Science and Technology of Korea through National Research
Laboratory (NRL) program awarded to Prof. Soo Young Park and
in part by Dongwoo FineChem Co., Ltd.
As seen in Figure 1, two different types of phosphorescence
emission and related iridium complexes were identified. Type I
complexes (FIrmpic, FIrpic) exhibited a blue emission with vibronic
structures and showed an invariant spectral emission both in solution
and in solid state, as reported earlier for FIrpic. On the other hand,
Type II complexes (FIrqnd, FIrpca, FIriq, FIrprz, FIrprza, and
FIrqnx) exhibited a broad spectral emission at longer wavelength
and a characteristically hypsochromic spectral shift in the solid state
compared to the solution state. Furthermore, it is worth noting that
the Type II complexes show distinct positive solvatochromism in
the phosphorescence emission (see Figure 1c) in contrast that of
Type I complexes, indicating that the emitting states of Type II
complexes comprise an intramolecular charge transfer (ICT) state.9
On the basis of these experimental observations, the most
probable mechanism of phosphorescence emission from the hetero-
leptic iridium complex is shown in Figure 2a. After the MLCT1
excitation from iridium to dfppy in the singlet manifold, highly
efficient inter-system crossing to MLCT3 occurs due to the strong
spin-orbit coupling. This dfppy-centered MLCT3 state has different
fates (Types I and II), depending on the triplet energy level of the
ancillary ligand (LX3) compared to that of MLCT3, as depicted in
Figure 2. Type I emission is attributed to the phosphorescent decay
from the MLCT3 state of dfppy, which must occur when the level
of LX3 locates higher than that of MLCT3. On the other hand, ILET
to the LX3 state of the ancillary ligand followed by phosphorescent
decay (Type II emission) occurs when the level of LX3 is lower
than that of MLCT3. This ILET-mediated phosphorescence emission
is strongly supported by the relative LUMO energies calculated
by the DFT method (see Table 1). It is clearly noted that the LX3
Supporting Information Available: A summary of detailed
synthetic procedure, spectral assignment, full absorption and photo-
luminescence spectra, and characterization methods. This material is
References
(1) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.;
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151-154.
(2) Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.;
Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino,
M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971-12979.
(3) (a) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong,
R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem.
2001, 40, 1704-1711. (b) Anthopoulos, T. D.; Frampton, M. J.; Namdas,
E. B.; Burn, P. L.; Samuel, I. D. W. AdV. Mater. 2004, 16, 557-560. (c)
Yeh, S.-J.; Wu, M.-F.; Chen, C.-T.; Song, Y.-H.; Chi, Y.; Ho, M.-H.;
Hsu, S.-F.; Chen, C. H. AdV. Mater. 2005, 17, 285-289. (d) Li, J.;
Djurovich, P. I.; Alleyne, B. D.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson,
M. E. Polyhedron 2004, 23, 419-428. (e) Nazeeruddin, M. K.; Humphry-
Baker, R.; Berner, D.; Rivier, S.; Zuppiroli, L.; Graetzel, M. J. Am. Chem.
Soc. 2003, 125, 8790-8797.
(4) (a) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-
E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am.
Chem. Soc. 2001, 123, 4304-4312. (b) Coppo, P.; Plummer, E. A.; De
Cola, D. Chem. Commun. 2004, 1774-1775. (c) Adachi, C.; Kwong, R.
C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.;
Forrest, S. R. Appl. Phys. Lett. 2001, 79, 2082-2084.
(5) Kwon, T.-H.; Cho, H. S.; Kim, M. K.; Kim, J.-H.; Kim, J.-J.; Lee, K. H.;
Park, S. J.; Shin, I.-S.; Kim, H.; Shin, D. M.; Chung, Y. K.; Hong, J.-I.
Organometallics 2005, 24, 1578-1585.
(6) Schoonover, J. R.; Dattaelbaum, D. M.; Malko, A.; Klimov, V. I.; Meyer,
T. J.; Stryers-Barnett, D. J.; Gannon, E. Z.; Granger, C.; Aldridge, W. S.,
III; Papanikolas, J. M. J. Phys. Chem. A 2005, 109, 2472-2475.
(7) For the spectra of other iridium complexes, see Supporting Information.
(8) Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc.
1984, 106, 6647-6653.
(9) Seo, J.; Kim, S.; Park, S. Y. J. Am. Chem. Soc. 2004, 126, 11154-11155.
JA052880T
9
J. AM. CHEM. SOC. VOL. 127, NO. 36, 2005 12439