Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Communication
Conclusions
Keywords: N-Acyliminium ions · Alkaloids · Glochidine ·
The synthesis of the natural alkaloids glochidine (1) and glo- Glochidicine · Imidazole · Pictet-Spengler reactions · Singlet
chidicine (2) has been presented. Their synthesis started from oxygen
2-hexylfuran, which was effectively transformed into the natural
alkaloids using singlet oxygen as oxidant and histamine as a
nitrogen source. The outcome of the tandem reaction sequence
was successfully controlled by judicious choice of both the pho-
tosensitizer and the solvent.
[1] L. Maat, H. C. Beyerman in The Alkaloids: Chemistry and Pharmacology,
vol. 22 (Ed.: A. Brossi), Elsevier, New York, 1984, pp. 281–333.
[2] A. P. Santos, P. R. H. Moreno in Natural Products, vol. 1 (Eds.: K. G. Rama-
wat, J. M. Mérillon), Springer-Verlag, Berlin–Heidelberg, 2013, pp. 861–
882.
[3] H. Fujioka, Y. Kita in Natural Products, vol. 1 (Eds.: K. G. Ramawat, J. M.
Mérillon), Springer-Verlag, Berlin–Heidelberg, 2013, pp. 264–278.
[4] a) F. Khuong-Huu, X. Monseur, G. Ratle, G. Lukacs, R. Goutarel, Tetrahe-
dron Lett. 1973, 14, 1757–1760; b) L. Tchissambou, M. Bénéchie, F.
Khuong-Huu, Tetrahedron Lett. 1978, 19, 1801–1802; c) P. G. Waterman,
D. F. Faulkner, Phytochemistry 1981, 20, 2765–2767; d) L. Tchissambou,
M. Bénéchie, F. Khuong-Huu, Tetrahedron 1982, 38, 2687–2695.
[5] a) S. R. Johns, J. A. Lamberton, Chem. Commun. (London) 1966, 312–313;
b) S. R. Johns, J. A. Lamberton, Aust. J. Chem. 1967, 20, 555–560.
[6] J. S. Fitzgerald, Aust. J. Chem. 1964, 17, 375–378.
Experimental Section
General Method: 2-Hexylfuran (5; 0.5 mmol) was dissolved in
methanol (12.5 mL, 40 m
M
) containing catalytic amounts of Rose
Bengal or Methylene Blue (10–4
M). Oxygen (baloon) was gently
bubbled through the solution, while it was irradiated with white
LEDs (strip, 14.4 W/m, 50 Lm/W). The reaction was monitored by
TLC. After completion of the reaction (5 min), Me2S (2.0 mmol) was
added (in methanol when targeting glochidine, or in dichloro-
methane for glochidicine), and the reaction mixture was stirred for
45 min. Then, histamine (0.5 mmol) was added (in methanol when
targeting glochidine, or in dichloromethane for glochidicine), and
the solution was stirred at room temperature for a further 1 h. After
the formation of the 2-pyrrolidinone 8, the solvent was replaced
with HCOOH, and the solution was stirred at room temperature for
18 h for glochidine (1), or at reflux for 18 h for glochidicine (2).
Afterwards, the mixtures were concentrated in vacuo, and the final
products were purified by flash column chromatography (silica gel;
EtOAc → acetone/EtOAc, 1:1) to afford glochidine (1; 62 % yield) or
glochidicine (2; 58 % yield).
[7] Y. S. Lee, S. H. Kim, S. H. Jung, S. J. Lee, H. Park, Heterocycles 1994, 37,
303–309.
[8] a) W. N. Speckamp, M. J. Moolenaar, Tetrahedron 2000, 56, 3817–3856;
b) B. E. Maryanoff, H.-C. Zhang, J. H. Cohen, I. J. Turchi, C. A. Maryanoff,
Chem. Rev. 2004, 104, 1431–1628; c) A. Yazici, S. G. Pyne, Synthesis 2009,
339–368; d) U. Martínez-Estibalez, A. Gómez-SanJuan, O. García-Calvo, E.
Aranzamendi, E. Lete, N. Sotomayor, Eur. J. Org. Chem. 2011, 3610–3633;
e) A. Daïch, A. Ghinet, B. Rigo in Comprehensive Organic Synthesis, vol. 2
(Eds.: P. Knochel, G. A. Molander), Elsevier, Oxford, 2014, pp. 682–742.
[9] a) A. Pictet, T. Spengler, Ber. Dtsch. Chem. Ges. 1911, 44, 2030–2036; b)
E. D. Cox, J. M. Cook, Chem. Rev. 1995, 95, 1797–1842; c) J. Stöckigt, A. P.
Antonchick, F. Wu, H. Waldmann, Angew. Chem. Int. Ed. 2011, 50, 8538–
8564; Angew. Chem. 2011, 123, 8692–8719.
[10] a) H. Abdelkafi, B. Nay, Nat. Prod. Rep. 2012, 29, 845–869; b) Y. Wang, L.
Zhu, Y. Zhang, R. Hong, Angew. Chem. Int. Ed. 2011, 50, 2787–2790;
Angew. Chem. 2011, 123, 2839–2842; c) S. N. Gaskell, L. J. Duffy, S. M.
Allin, Nat. Prod. Commun. 2008, 3, 1825–1838; d) I. T. Raheem, P. S. Thiara,
E. A. Peterson, E. N. Jacobsen, J. Am. Chem. Soc. 2007, 129, 13404–13405.
[11] For selective examples, see: a) M. Jida, O.-M. Soueidan, B. Deprez, G.
Laconde, R. Deprez-Poulain, Green Chem. 2012, 14, 909–911; b) S. M.
Allin, J. M. R. Towler, M. R. J. Elsegood, B. Saha, P. C. Bulman, Synth.
Commun. 2012, 42, 872–882; c) J.-F. Fleury, P. Netchitaïlo, A. Daïch, Synlett
2011, 1821–1826; d) A. A. Bahajaj, M. H. Moore, J. M. Vernon, Tetrahedron
2004, 60, 1235–1246.
[12] a) D. Kalaitzakis, T. Montagnon, I. Alexopoulou, G. Vassilikogiannakis,
Angew. Chem. Int. Ed. 2012, 51, 8868–8871; Angew. Chem. 2012, 124,
8998–9001; b) D. Kalaitzakis, T. Montagnon, E. Antonatou, N. Bardají, G.
Vassilikogiannakis, Chem. Eur. J. 2013, 19, 10119–10123; c) D. Kalaitzakis,
T. Montagnon, E. Antonatou, G. Vassilikogiannakis, Org. Lett. 2013, 15,
3714–3717; d) D. Kalaitzakis, E. Antonatou, G. Vassilikogiannakis, Chem.
Commun. 2014, 50, 400–402; e) D. Kalaitzakis, T. Montagnon, G. I. Ioan-
nou, E. Antonatou, G. Vassilikogiannakis, ARCIVOC 2015, (iii), 154–166.
[13] T. Montagnon, D. Kalaitzakis, M. Triantafyllakis, M. Stratakis, G. Vassilikogi-
annakis, Chem. Commun. 2014, 50, 15480–15498.
1
Glochidine (1): H NMR (500 MHz, CDCl3): δ = 7.45 (s, 1 H), 6.76 (s,
1 H), 4.31 (ddd, J = 13.5, 6.4, 2.1 Hz, 1 H), 3.08 (ddd, J = 13.3, 11.1,
5.9 Hz, 1 H), 2.91–2.80 (m, 2 H), 2.63–2.47 (m, 3 H), 2.41 (m, 1 H),
1.94 (m, 2 H), 1.34–1.20 (m, 8 H), 0.85 (t, J = 6.9 Hz, 3 H) ppm. 13C
NMR (125 MHz, CDCl3): δ = 173.4, 132.2, 125.0, 124.7, 78.4, 41.5,
33.4, 31.4 (2 C), 29.8, 28.8, 23.6, 22.4, 20.1, 13.9 ppm. HRMS (TOF
ESI): calcd. for C15H24N3O [M + H]+ 262.1914; found 262.1917.
Glochidicine (2): 1H NMR (500 MHz, CDCl3): δ = 8.95 (br. s, 1 H),
7.53 (s, 1 H), 4.39 (dd, J = 13.3, 6.5 Hz, 1 H), 3.08 (td, J = 12.4, 5.0 Hz,
1 H), 2.78 (ddd, J = 15.5, 11.5, 6.5 Hz, 1 H), 2.59 (m, 2 H), 2.35 (m, 2
H), 2.14 (m, 1 H), 1.91 (m, 1 H), 1.77 (m, 1 H), 1.41 (m, 1 H), 1.34–
1.20 (m, 7 H), 0.84 (t, J = 6.5 Hz, 3 H) ppm. 13C NMR (125 MHz,
CDCl3): δ = 174.3, 138.8, 134.1, 122.1, 63.5, 39.5, 34.6, 31.6, 31.2,
29.7, 29.5, 24.0, 22.5, 21.8, 14.0 ppm. HRMS (TOF ESI): calcd. for
C15H24N3O [M + H]+ 262.1914; found 262.1915.
Acknowledgments
[14] a) D. Kalaitzakis, A. Kouridaki, D. Noutsias, T. Montagnon, G. Vassilikogian-
nakis, Angew. Chem. Int. Ed. 2015, 54, 6283–6287; Angew. Chem. 2015,
127, 6381–6385; b) D. Kalaitzakis, D. Noutsias, G. Vassilikogiannakis, Org.
Lett. 2015, 17, 3596–3599.
The research leading to these results has received funding from
the European Research Council under the European Union's
Seventh Framework Programme (FP7/2007-2013)/ERC Grant
Agreement No. 277588 as well as from the European Union's
Seventh Framework Programme (FP7/2007-2013)/Marie Curie
ITN Grant Agreement No. 316975).
Received: April 27, 2016
Published Online: ■
Eur. J. Org. Chem. 0000, 0–0
3
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim