24
Y.-H. (Cathy) Chin et al. / Journal of Catalysis 283 (2011) 10–24
control, achieved by extensive dilutions of catalyst pellets and the
reactor bed. A small amount of CO was detected (CO/CO2 < 0.02)
only at very low O2/CH4 ratios (O2/CH4 < 0.004) as catalyst surfaces
were depleted of reactive oxygen intermediates.
References
[1] J.R. Rostrup-Nielsen, Catal. Today 71 (2002) 243.
[2] N. Dave, G.A. Foulds, Ind. Eng. Chem. Res. 34 (1995) 1037.
[3] D.A. Hickman, L.D. Schmidt, Science 259 (1993) 243.
[4] D.A. Hickman, E.A. Haupfear, L.D. Schmidt, Catal. Lett. 17 (1993) 223.
[5] D. Dissanayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford, J. Catal. 132 (1991)
117.
[6] W.J.M. Vermeiren, E. Blomsma, P.A. Jacobs, Catal. Today 13 (1992) 427.
[7] I. Tavazzi, M. Maestri, A. Beretta, G. Groppi, E. Tronconi, P. Forzatti, AIChE J. 52
(2006) 3234.
[8] A. Beretta, G. Groppi, M. Lualdi, I. Tavazzi, P. Forzatti, Ind. Eng. Chem. Res. 48
(2009) 3825.
[9] R. Horn, K.A. Williams, N.J. Degenstein, A. Bitsch-Larsen, D. Dalle Nogare, S.A.
Tupy, L.D. Schmidt, J. Catal. 249 (2007) 380.
Oxygen selectivities, defined by the ratios of reactive collision
probability (also the effective rate constant) of desorbed CO and
CH4 reactant, determine the CO/CO2 ratios in CH4–O2 reactions.
We have interpreted the oxygen selectivities rigorously in terms
of elementary rate and equilibrium constants and measured their
values by competitive 13CH4 and 12CO oxidation in 13CH4–12CO–
O2 mixtures. Reactive collision probabilities of CO with Oꢀ on
uncovered Pt clusters are much larger than those of CH4. The high-
er reactivity for CO than CH4 toward the Oꢀ limits the maximum
attainable CO yield from direct CH4 and O2 reactions.
[10] B.C. Enger, R. Lødeng, A. Holmen, Appl. Catal. A 364 (2009) 15.
[11] M.A. Vannice, J.E. Benson, M. Boudart, J. Catal. 16 (1970) 348.
[12] R.L. David, Handbook of Chemistry and Physics, 87th ed., CRC Press, Boca
Raton, FL, 2006. p. 4–26, p. 4–30.
Density functional theory (DFT) results are used within the
framework of transition state theory and ensemble-averaging
methods to calculate the oxygen selectivities. DFT calculations
were carried out on the corner, edge, and terrace sites of a model
cubo-octahedral Pt cluster (1.8 nm diameter) to probe the kineti-
cally relevant steps and the identity of active sites involved in
CH4 and CO oxidation. CH4 oxidation proceeds via kinetically rele-
vant C–H bond dissociation over Pt atom site pairs (ꢀ–ꢀ) in which
one of the Pt sites undergoes an oxidative insertion step into the
C–H bond. The barriers for this step are correlated to the Pt–CH3
bond strength and coordination number of the Pt atom that carries
out the oxidative insertion step. CO oxidation proceeds via a non-
activated molecular CO adsorption step; this step is irreversible be-
cause of the much larger barrier for its reverse step (COꢀ desorp-
tion) than for the sequential COꢀ and Oꢀ recombination. The
barriers for CO and CH4 oxidation were calculated from ensemble
averaging the individual barriers for the various types of surface
sites on the model Pt cluster. These barriers, together with the
measured activation entropies, give the calculated ensemble-aver-
aged Oꢀ selectivities. The Oꢀ selectivities are proportional to O2/CO
ratios and are estimated to be much larger than unity, especially
when a small amount of CO is formed initially, over the entire tem-
perature range typical for CH4–O2 catalysis. These results unequiv-
ocally show that oxidation of CO intermediate is much more rapid
than the activation of CH4 reactant. The marked reactivity differ-
ences between CO and CH4 lead to low intrinsic limits of the max-
imum CO yields from direct CH4 and O2 reactions at any practical
extent of CH4 conversion.
[13] R. Van Hardeveld, F. Hartog, Surf. Sci. 15 (1969) 189.
[14] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C.
Fiolhais, Phys. Rev. B 46 (1992) 6671.
[15] G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251.
[16] G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15.
[17] G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
[18] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.
[19] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
[20] G. Henkelman, H. Jonsson, J. Chem. Phys. 113 (2000) 9978.
[21] R.M. Koros, E.J. Nowak, Chem. Eng. Sci. 22 (1967) 470.
[22] R. Madon, M. Boudart, Ind. Eng. Chem. Fund. 21 (1982) 438.
[23] Y.-H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc., in press.
[24] J. Wei, E. Iglesia, J. Phys. Chem. B 108 (2004) 4094.
[25] Estimated based on monolith volume of 2.5 cm3, 66.7 cm 3 sꢁ1 CH4/air feed
mixtures with an O2/CH4 ratio of 2, and 50% CH4 conversion.
[26] A. Eichler, J. Hafner, Phys. Rev. Lett. 79 (1997) 4481.
[27] M. García-Diéguez, Y.-H. Chin, E. Iglesia, J. Catal., submitted for publication.
ꢀ
[28] The exact
m1 and
m
2 values affect only the stoichiometry that appears in the SO
ꢀ
expression but not the functional dependence of SO on O2/CO ratios.
[29] J. Wei, E. Iglesia, J. Catal. 225 (2004) 116.
[30] J. Wei, E. Iglesia, J. Phys. Chem. B 108 (2004) 7253.
[31] A. Yamaguchi, E. Iglesia, J. Catal. 274 (2010) 52.
[32] H. Burghgraef, A.P.J. Jansen, R.A. van Santen, Surf. Sci. 324 (1995) 345.
[33] I.M. Ciobica, F. Frechard, R.A. van Santen, A.W. Kleyn, J.A. Hafner, J. Phys. Chem.
B. 104 (2000) 3364.
[34] G. Jones, J.G. Jakobsen, S.S. Shim, J. Kleis, M.P. Andersson, J. Rossmeisl, F. Abild-
Pedersen, T. Bligaard, S. Helveg, B. Hinnemann, J.R. Rostrup-Nielsen, I.
Chorkendorff, J. Sehested, J.K. Norskov, J. Catal. 249 (2008) 147.
[35] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, second ed.,
Butterworth-Heinemann, 1997. p. 1148.
[36] S.I. Sanchez, L.D. Menard, A. Bram, J.H. Kang, M.W. Small, R.G. Nuzzo, A.I.
Frenkel, J. Am. Chem. Soc. 131 (2009) 7040.
[37] C. Buda, M. Neurock, unpublished results.
[38] Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215.
[39] G. Scuseria, V.N. Staroverov, in: C.E. Dykstra, G. Frenking, K.S. Kim, G.E.
Scuseria (Eds.), Theory and Applications of Computational Chemistry: The First
40 Years, Elsevier, Amsterdam, The Netherlands, 2005, p. 669.
[40] S. Sakaki, M. Ieki, J. Am. Chem. Soc. 115 (1993) 2373.
Acknowledgments
[41] P.S. Venkataraman, M. Neurock, V.S. Lusvardi, J.J. Lerou, D.D. Kragten, R.A. van
Santen, J. Phys. Chem. B 106 (2002) 1656.
This study was supported by BP as part of the Methane Conver-
sion Cooperative Research Program. We also gratefully acknowl-
edge the computational support from the Molecular Science
Computing Facility (MSCF) in the William R. Wiley Environmental
Molecular Sciences Laboratory, a national scientific user facility
sponsored by the US Department of Energy’s Office of Biological
and Environmental Research and located at the Pacific Northwest
National Laboratory. Pacific Northwest is operated by Battelle for
the Department of Energy.
[42] M. Neurock, Appl. Catal. 160 (1996) 169.
[43] R.A. van Santen, M. Neurock, S.G. Shetty, Chem. Rev. 110 (2010) 2005.
[44] W.D. Jones, Acc. Chem. Res. 36 (2003) 140.
[45] T.R. Cundari, J. Am. Chem. Soc. 116 (1994) 340.
[46] J. Oxgaard, R.P. Muller, W.A. Goddard III, R.A. Periana, J. Am. Chem. Soc. 126
(2004) 352.
[47] T.R. Cundari, T.V. Grimes, T.B. Gunnoe, J. Am. Chem. Soc. 129 (2007) 13172.
[48] A. Ishikawa, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 129 (2007) 13201.
[49] R.A. van Santen, M. Neurock, Molecular Heterogeneous Catalysis: A Conceptual
and Computational Approach, Wiley-VCH, Weinheim, Cambridge, 2006.
[50] Y.-H. Chin, E. Iglesia, unpublished results.
[51] O. Muller, R. Roy, J. Less-Common Metals 16 (1968) 129.
[52] The Oꢀ coverages during steady-state catalysis depends on the operating O2/
CH4 ratios, the rate and thermodynamic constants for the O2 and C–H bond
activation elementary steps, which vary with Pt cluster size. For the 33 nm Pt
clusters, the surfaces are depleted of Oꢀ for O2/CH4 ratios below 0.08 at 873 K.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in