M. Abrahamsson, D. LeGourriérec, Y. Frapart, A. Magnuson, P.
H. Kenéz, P. Brandt, A. Tran, L. Hammarström, S. Styring and
B. Åkermark, Hydrogen-bond promoted intramolecular electron transfer
to photogenerated Ru(III): A functional mimic of TyrosineZ and Histidine
190 in Photosystem II, J. Am. Chem. Soc., 1999, 121, 6834–6842.
16 (a) T. F. Markle, I. J. Rhile, A. G. Dipasquale and J. M. Mayer, Probing
concerted proton–electron transfer in phenol–imidazoles, Proc. Natl.
Acad. Sci. U. S. A., 2008, 105, 8185–8190; (b) T. F. Markle and J.
M. Mayer, Concerted proton–electron transfer in pyridylphenols: The
importance of the hydrogen bond, Angew. Chem., Int. Ed., 2008, 47,
738–740; (c) I. J. Rhile, T. F. Markle, H. Nagao, A. G. Dipasquale,
O. P. Lam, M. A. Lockwood, K. Rotter and J. M. Mayer, Concerted
proton−electron transfer in the oxidation of hydrogen-bonded phenols,
J. Am. Chem. Soc., 2006, 128, 6075–6088; (d) I. J. Rhile and J.
M. Mayer, One-electron oxidation of a hydrogen-bonded phenol occurs
by concerted proton-coupled electron transfer, J. Am. Chem. Soc., 2004,
126, 12718–12719.
17 (a) C. Costentin, M. Robert and J.-M. Savéant, Adiabatic and non-adia-
batic concerted proton−electron transfers. Temperature effects in the oxi-
dation of intramolecularly hydrogen-bonded phenols, J. Am. Chem. Soc.,
2007, 129, 9953–9963; (b) C. Costentin, M. Robert and J.-M. Savéant,
Electrochemical and homogeneous proton-coupled electron transfers:
Concerted pathways in the one-electron oxidation of a phenol coupled
with an intramolecular amine-driven proton transfer, J. Am. Chem. Soc.,
2006, 128, 4552–4553.
the pyrrolidino nitrogen can be used as a built in proton-
accepting unit that modulates the energetics of the attached
donor. The system mimics certain aspects of PCET reactions in
biology and thus provides a model for better understanding the
role of this class of reactions in forming efficient interfaces
between light absorbing reaction centers and multi-electron cata-
lytic components.
Acknowledgements
This work was supported as part of the Center for Bio-Inspired
Solar Fuel Production, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences under Award Number
DE-SC0001016.
References
1 B. A. Barry, Proton coupled electron transfer and redox active tyrosines
in photosystem II, J. Photochem. Photobiol., B, 2011, 104, 60–71.
2 J. L. Dempsey, J. R. Winkler and H. B. Gray, Proton-coupled electron
flow in protein redox machines, Chem. Rev., 2010, 110, 7024–7039.
3 J. P. McEvoy and G. W. Brudvig, Water-splitting chemistry of photosys-
tem II, Chem. Rev., 2006, 106, 4455–4483.
4 J. Stubbe, D. G. Nocera, C. S. Yee and M. C. Y. Chang, Radical initiation
in the class I Ribonucleotide Reductase: Long-range proton-coupled elec-
tron transfer?, Chem. Rev., 2003, 103, 2167–2201.
5 S. Ferguson-Miller and G. T. Babcock, Heme/copper terminal oxidases,
Chem. Rev., 1996, 96, 2889–2908.
6 C. Costentin, M. Robert and J.-M. Savéant, Concerted proton–electron
transfers in the oxidation of phenols, Phys. Chem. Chem. Phys., 2010,
12, 11179–11190.
7 C. Costentin, Electrochemical approach to the mechanistic study of
proton-coupled electron transfer, Chem. Rev., 2008, 108, 2145–2179.
8 J. M. Mayer, Simple marcus-theory-type model for hydrogen-atom trans-
fer/proton-coupled electron transfer, J. Phys. Chem. Lett., 2011, 2, 1481–
1489.
9 S. Hammes-Schiffer, Current theoretical challenges in proton-coupled
electron transfer: Electron-proton nonadiabaticity, proton relays, and ultra-
fast dynamics, J. Phys. Chem. Lett., 2011, 2, 1410–1416.
18 (a) C. J. Fecenko, H. H. Thorp and T. J. Meyer, The role of free energy
change in coupled electron-proton transfer, J. Am. Chem. Soc., 2007,
129, 15098–15099; (b) J. J. Concepcion, M. K. Brennaman,
J. R. Deyton, N. V. Lebedeva, M. D. E. Forbes, J. M. Papanikolas and T.
J. Meyer, Excited-state quenching by proton-coupled electron transfer,
J. Am. Chem. Soc., 2007, 129, 6968–6969.
19 (a) L. Benisvy, R. Bittl, E. Bothe, C. D. Garner, J. McMaster, S. Ross,
C. Teutloff and F. Neese, Phenoxyl radicals hydrogen-bonded to imidazo-
lium: Analogues of tyrosyl D• of Photosystem II: High-field EPR and
DFT studies, Angew. Chem., Int. Ed., 2005, 44, 5314–5317;
(b) F. Lachaud, A. Quaranta, Y. Pellegrin, P. Dorlet, M. F. Charlot, S. Un,
W. Liebl and A. Aukauloo, A. biomimetic model of the electron transfer
between P680 and the TyrZ–His190 pair of PSII, Angew. Chem., Int. Ed.,
2005, 44, 1536–1540; (c) L. Benisvy, E. Bill, A. J. Blake, D. Collison, E.
S. Davies, C. D. Garner, C. I. Guindy, E. J. L. McInnes, G. McArdle,
J. McMaster, C. Wilson and J. Wolowska, Phenolate and phenoxyl
radical complexes of Co(II) and Co(III), Dalton Trans., 2004, 3647–3653.
20 L. Biczók, N. Gupta and H. Linschitz, Coupled electron-proton transfer
in interactions of Triplet C60 with hydrogen-bonded phenols: Effects of
solvation, deuteration, and redox potentials, J. Am. Chem. Soc., 1997,
119, 12601–12609.
21 (a) G. F. Moore, M. Hambourger, M. Gervaldo, O. G. Poluektov, T. Rajh,
D. Gust, T. A. Moore and A. L. Moore, A bioinspired construct that
mimics the proton coupled electron transfer between P680+ and the
TyrZ-His190 pair of Photosystem II, J. Am. Chem. Soc., 2008, 130,
10466–10467; (b) G. F. Moore, M. Hambourger, G. Kodis, W. Michl,
D. Gust, T. A. Moore and A. L. Moore, Effects of protonation state on a
Tyrosine-Histidine bioinspired redox mediator, J. Phys. Chem. B, 2010,
114, 14450–14457.
22 D. Gust, T. A. Moore, D. K. Luttrull, G. R. Seely, E. Bittersman, R.
V. Bensasson, M. Rougee, E. J. Land, S. F. C. De and D. A. M. Van,
Photophysical properties of 2-nitro-5,10,15,20-tetra-p-tolylporphyrins,
Photochem. Photobiol., 1990, 51, 419–426.
10 C. J. Gagliardi, B. C. Westlake, C. A. Kent, J. J. Paul, J. M. Papanikolas
and T. J. Meyer, Integrating proton coupled electron transfer (PCET) and
excited states, Coord. Chem. Rev., 2010, 254, 2459–2471.
11 M. H. V. Huynh and T. J. Meyer, Proton-coupled electron transfer, Chem.
Rev., 2007, 107, 5004–5064.
12 J. Rosenthal and D. G. Nocera, Role of proton-coupled electron transfer
in O–O bond activation, Acc. Chem. Res., 2007, 40, 543–553.
13 J. M. Mayer, Proton-coupled electron transfer: A reaction chemist’s view,
Annu. Rev. Phys. Chem., 2004, 55, 363–390.
14 Y. Umena, K. Kawakami, J.-R. Shen and N. Kamiya, Crystal structure of
oxygen-evolving photosystem II at a resolution of 1.9 Å, Nature, 2011,
473, 55–60.
23 J. F. Larrow and E. N. Jacobsen, A practical method for the large-scale
preparation of [N,N′-bis(3,5-di-tert-butylsalicy1idene)-1,2-cyclohexane-
diaminato(2-)] manganese(III) chloride, a highly enantioselective epoxida-
tion catalyst, J. Org. Chem., 1994, 59, 1939–1942.
24 M. Maggini, G. Scorrano and M. Prato, Addition of azomethine ylides to
C60: synthesis, characterization, and functionalization of fullerene pyrroli-
dines, J. Am. Chem. Soc., 1993, 115, 9798–9799.
25 I. A. Nuretdinov, V. P. Gubskaya, V. V. Yanilkin, V. I. Morozov,
V. V. Zverev, A. V. Il’yasov, G. M. Fazleeva, N. V. Nastapova and
D. V. Il’matova, Fulleropyrrolidine-containing sterically hindered phenol.
Synthesis, structure and properties, Russ. Chem. Bull., 2001, 50, 607–613.
26 M. Prato and M. Maggini, Fulleropyrrolidines: A family of full-fledged
fullerene derivatives, Acc. Chem. Res., 1998, 31, 519–526.
15 (a) M.-T. Zhang and L. Hammarström, Proton-coupled electron transfer
from tryptophan: A concerted mechanism with water as proton acceptor,
J. Am. Chem. Soc., 2011, 133, 13224–12227; (b) M.-T. Zhang, T. Irebo,
O. Johansson and L. Hammarström, Proton coupled electron transfer
from tyrosine: A strong rate dependence on intramolecular proton transfer
distance, J. Am. Chem. Soc., 2011, 133, 8806–8809; (c) T. Irebo,
O. Johansson and L. Hammarström, The rate ladder of proton-coupled
tyrosine oxidation in water: A systematic dependence on hydrogen bonds
and protonation state, J. Am. Chem. Soc., 2008, 130, 9194–9195;
(d) L. Johannissen, T. Irebo, M. Sjödin, O. Johansson and
L. Hammarström, The kinetic effect of internal hydrogen bonds on
proton-coupled electron transfer from phenols: A theoretical analysis with
modeling of experimental data, J. Phys. Chem. B, 2009, 113, 16214–
16225; (e) M. Sjödin, T. Irebo, E. Utas Josefin, J. Lind, G. Merenyi,
B. Åkermark and L. Hammarström, Kinetic effects of hydrogen bonds on
proton-coupled electron transfer from phenols, J. Am. Chem. Soc., 2006,
128, 13076–13083; (f) L. Sun, M. Burkitt, M. Tamm, M. K. Raymond,
27 A. Hirsch and M. Brettreich, Fullerenes, Wiley-VCH, Weinheim,
Germany, 2005.
28 D. M. Guldi and M. Prato, Excited-state properties of C60 fullerene
derivatives, Acc. Chem. Res., 2000, 33, 695–703.
This journal is © The Royal Society of Chemistry and Owner Societies 2012
Photochem. Photobiol. Sci.